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Preface to the Second Edition

In the first edition of Winning Ways, which appeared in 1982, we were able to make a rather
sharp distinction between those games in Part I, to which the major theory of addition applied
directly, and those games in Part 3, which seemed to require more specialized techniques. How-
ever, subsequent research by an increasingly large community of combinatorial game theorists
has begun to blur this distinction. We now have many more games whose strategies depend
both on the general theory of Volume 1 as well as on more specialized results. Introductions
to many of these games and some illustrative problems have been added to this new edition.
Those that did not readily fit elsewhere can be found in the new Extras to Chapter 22 at the
end of this volume. This volume also includes a major revision of the original Chapter 20
on the game of Fox and Geese. Its enhanced variation, Fox-Flocks-Fox, provides compelling
illustrations of some of the challenging problems that can now be solved by appropriately
combining theories from Volumes 1, 2, and 3 with innovative computing algorithms.

This new edition owes much to the supportive efforts of numerous friends and colleagues,
including Noam Elkies, Tom Ferguson, Aviezri Fraenkel, Martin Gardner, Sol Golomb, Al
Hales, Greg Kuperberg, Silvio Levy, Donald Knuth, Martin Kutz, Greg Martin, Victor Meally,
Richard Nowakowski, Hilarie Orman, Marc Paulhus, Ed Pegg, Michael Reid, Thea van Roode,
Katherine Scott, George Sicherman, Aaron Siegel, Neil Sloane, Sally Smith, William Spight,
John Tromp, Jonathan Welton, Julian West, David Wilson, and David Wolfe, and to the very
professional yet kindly support of our publishers, Alice and Klaus Peters.

Elwyn Berlekamp, University of California, Berkeley
John Conway, Princeton University
Richard Guy, The University of Calgary, Canada

June 23, 2003
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Preface to the Original Edition

Does a book need a Preface? What more, after fifteen years of toil, do three talented
authors have to add.

We can reassure the bookstore browser, “Yes, this is just the book you want!”

We can direct you, if you want to know quickly what’s in the book, to page xx. This in
turn directs you to volumes 1,2,3 and 4.

We can supply the reviewer, faced with the task of ploughing through nearly a thousand
information-packed pages, with some pithy criticisms by indicating the horns of the polylemma
the book finds itself on. It is not an encyclopedia. It is encyclopedic, but there are still
too many games missing for it to claim to be complete. It is not a book on recreational
mathematics because there's too much serious mathematics in it. On the other hand, for us, as
for our predecessors Rouse Ball, Dudeney, Martin Gardner, Kraitchik, Sam Loyd, Lucas, Tom
O’'Beirne and Fred. Schuh, mathematics itself is a recreation. It is not an undergraduate text,
since the exercises are not set out in an orderly fashion, with the easy ones at the beginning.
They are there though, and with the hundred and sixty-three mistakes we’ve left in, provide
plenty of opportunity for reader participation. So don’t just stand back and admire it, work
of art though it is. It is not a graduate text, since it's too expensive and contains far more
than any graduate student can be expected to learn. But it does carry you to the frontiers of
research in combinatorial game theory and the many unsolved problems will stimulate further
discoveries.

We thank Patrick Browne for our title. This exercised us for quite a time. One morning,
while walking to the university, John and Richard came up with “Whose game?” but realized
they couldn’t spell it (there are three tooze in English) so it became a one-line joke on line
one of the text. There isn't room to explain all the jokes, not even the fifty-nine private ones
(each of our birthdays appears more than once in the book).

Omar started as a joke, but soon materialized as Kimberly King. Louise Guy also helped
with proof-reading, but her greater contribution was the hospitality which enabled the three
of us to work together on several occasions. Louise also did technical typing after many drafts
had been made by Karen McDermid and Betty Teare.

Our thanks for many contributions to content may be measured by the number of names
in the index. To do real justice would take too much space. Here's an abridged list of helpers:
Richard Austin , Clive Bach, John Beasley, Aviezri Fraenkel, David Fremlin, Solomon Golomb,
Steve Grantham, Mike Guy, Dean Hickerson, Hendrick Lenstra, Richard Nowakowski, Anne
Scott, David Seal, John Selfridge, Cedric Smith and Steve Tschantz.
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F Preface Xix

No small part of the reason for the assured success of the book is owed to the well-informed
and sympathetic guidance of Len Cegielka and the willingness of the staff of Academic Press
and of Page Bros. to adapt to the idiosyncrasies of the authors, who grasped every opportunity
to modify grammar, strain semantics, pervert punctuation, alter orthography, tamper with
traditional typography and commit outrageous puns and inside jokes.

Thanks also the the Isaak Walton Killam Foundation for Richard’s Resident Fellowship
at The University of Calgary during the compilation of a critical draft, and to the National
(Science & Engineering) Research Council of Canada for a grant which enabled Elwyn and
John to visit him more frequently than our widely scattered habitats would normally allow.

And thank you, Simon!

University of California, Berkeley, CA 94720 Elwyn Berlekamp
University of Cambridge, England, CB2 15B John Conway
University of Calgary, Canada, T2N 1N4 Richard Guy
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Games in Clubs!

To be an Englishman is to belong
to the most exclusive club there is.
Ogden Nash, Fngland Ezpects.

There are lots of games for which the theories we've now developed are useful, and even
more for which they're not, and we've grouped them into clubs according to how you play
them.

First some games you can play with coins, either by turning them over (Chapter 14) or
moving them along strips or about in heaps (Chapter 15).

Then games for which you’ll need pencil and paper, perhaps to draw straight lines (Chapter
16), or curved ones (Chapter 17) or merely to do the calculations in Chapter 18.

And for board games we have three case studies in which one player wins by trapping his
opponent (Chapters 19, 20, 21) and finally many more which are usually won by the first
player to establish some kind of winning configuration (Chapter 22).

XXi
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Turn and Turn About

Because [ do not hope to turn again
Because [ do not hope
Because I do not hope to turn.

T. S. Eliot, Ash Wednesday, 1.

Open not thine heart to every man, lest he requite thee
with a shrewd turn.
Ecclesiasticus, 8:19.

These games, based on an idea of H. W. Lenstra, are similar in that they all involve turning
things over, but we shall see that they call for a variety of strategies.

Turning Turtles

Figure 1. Playing Turning Turtles.

461




462 Chapter 14. Turn and Turn About &

In Fig. 1 the Walrus and the Carpenter are playing a rather cruel game. At each move a
player must put one turtle on its back and may also turn over any single turtle to the left of
it. This second turtle, unlike the first, may be turned either onto its feet or onto its back. The
player wins who turns the last turtle upside-down. Which turtles should the Walrus (1) turn?

Like most readers of this book, he wearily suspects another disguise for Nim. Here only
turtles 3, 4, 6, 8 and 10 are on their feet, and since the nim-sum of 3, 4 and 6 is 1, he may turn
10 onto its back and 9 onto its feet, producing 3,4, 6, 8, 9, a P-position since 8 £9=1. The
Carpenter (r.)responds by turning 8 and 5 producing the position 3, 4, 5, 6, 9 as in Fig. 2.

A8 A fIVLEA DO A A A NATS

Figure 2. After the Carpenter's Reply.

In Nim there is only one good move from this position—reduce 9 to 4, so as to produce, 3, 4,
4, 5, 6, which, since two equal Nim heaps may be cancelled, is much the same as 3, 5, 6, which
the Walrus reaches by turning both 9 and 4 on their backs (Fig. 3).

S AT (BT A A A A

Figure 3. How the Walrus Won.

Nim moves become turtle turns as follows. We reduce a heap to a size not already present
by turning one turtle on its back and putting another on its feet, as in the Walrus’s opening
move. If a heap of the reduced size is already present, we turn two turtles on their backs as
in the Walrus's response to the Carpenter’s move (cancelling two equal heaps). To eliminate
a heap entirely, we merely turn the appropriate turtle. So since 4, 6, 8, 10 is a P-position, the
Walrus could have won from Fig. 1 by just turning turtle 3.

Since all our turning games are impartial, they are solved by computing the nim-values,
and often may be thought of as heap games in disguise; but many games with interesting
theories are more naturally suggested by the turning version.
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O
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Figure 4. The Mock Turtle Joins in.

Mock Turtles

Let the players turn up to three turtles subject only to the condition that the rightmost of
these must be turned from his feet onto his back. We may think of this as a game with numbers
in which any number may be replaced by 0, 1 or 2 smaller ones. So G(n) is the least number

not of any form

0.6(a), G(a) + G(b),

in which @ and b are any numbers less than n.
If we number the positions from 0, we find the nim-values shown in Table 1.

n=01234 5 6 7 8 910111213 14 15 16 17 18 ...
Gn)=12478111314 16 19 21 22 25 26 28 31 32 35 37 ...

Table 1. Nim-values for Mock Turtles.

We see that G(n) is always 2n or 2n + 1, so that its binary expansion is obtained by
adjoining a digit 0 or 1 to that of n. Which shall it he?

n=0 1 10 11 100 101 110 111 1000 1001 1010 ...
G(n) = 110 100 111 1000 1011 1101 1110 10000 10011 10101 ...

Table 2. The Odious Numbers Revealed.

Il

Table 2 suggests we choose whichever makes the total number of 1-digits odd.

QOdious and Evil Numbers

Every number is odious or evil according to the number of 1’s in its binary expansion (odious
for odd, evil for even). These behave under Nim addition like odd and even numbers under

ordinary addition:

EVIL TEVIL = EVIL = ODIOUS -} ODIOUS,
EVIL } ODIOUS ODIOUS = ODIOUS } EVIL.

Il




464 Chapter 14. Turn and Turn About &

When we compute G(n) in Mock Turtles, the next odious number is never excluded, because
the nim-sum of two odious numbers is evil, but smaller evil numbers always are excluded.
If ay,as,...,a, is a P-position in Nim, so that

* * *
ay +as+ ... +"—1n=0-.~

then for the corresponding odious numbers G(a;) in Mock Turtles we shall have

G(ay) T Glan) T ... T Gan) =0or 1.

But if n is even, this nim-sum is evil, and so 0; while if n is odd it is odious, and so 1. The
P-positions in Mock Turtles are therefore just those P-positions in Nim for which n is even.

Note that in Mock Turtles we number the turtles from 0. The turtle numbered 0, called
the Mock Turtle, must take his turn with the rest and cannot be neglected in the conversion
to Nim. To obtain a P-position in Mock Turtles from the Turning Turtles position of Fig. 3,
the Mock Turtle must be brought into the game with his four feet on the ground. In Mock
Turtles, 3, 5, 6, is not a P-position, but 0, 3, 5, 6 is (Fig. 4).

Moebius, Mogul and Gold Moidores

Table 3 shows the nim-values, kindly checked for us on the computer by M.J.T. Guy, for similar
games in which we may turn over up to ¢ objects for ¢ = 1,2, .... Because the numbers get
much larger than the other nim-values in this book, we have written them in base 8 (octal)
notation. Nim-sums of octal numbers may be computed digit by digit thus:

12345670
13570246
1635436.

In the table we have only named the most interesting cases: ¢+ = 3,5, 7 and 9. Note that C,
E, G and I are the 3rd, 5th, 7th and 9th letters of the alphabet. For convenience, and to avoid
cruelty to turtles, the reader may play these games with coins. The coins will show heads or
tails according as the turtle is on his feet or on his back, and the rightmost coin that is turned
must change from heads to tails.

The Mock Turtle Theorem

Take a P-position in the game for an even value of ¢,f = 2m, and place an extra coin (the
Mock Turtle) at the left, whichever way up will ensure an even number of heads. Positions
obtained in this way will be called “good” positions for the next odd value of ¢, t = 2m + 1.We
assert that the good positions are precisely the P-positions for the game t = 2m + 1.

We show first that there is no way of changing from one good position to another by turning
at most 2m + 1 coins. If there were, the number of coins turned would necessarily be even,
since the good positions have evenly many heads, and so would actually be at most 2m. But
this would entail a move between two P-positions in the 2m game.
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MOCK MOEBIUS MOGUL MOIDORES

TURTLES
n =1 23 4 5 6 7 8 9
THE 1 1 1 1 1
MOCK
TURTLE
1 1 12 1 2 1 2 1 2
2 1 24 2 4 2 4 2 4
3 1 37 4 10 4 10 4 10
4 1 410 10 20 10 20 10 20
5 1 513 17 37 20 40 20 40
6 1 615 20 40 40 100 40 100
7 1 716 40 100 7T 177 100 200
8 1 10 20 63 147 100 200 200 400
9 111 23 100 200 200 400 377 7T
10 112 25 125 253 400 1000 400 1000
11 113 26 152 325 707 1617 1000 2000
12 114 31 200 400 1000 2000 2000 4000
13 115 32 226 455 1331 2663 4000 10000
14 116 34 253 526 1552 3325 7417 17037
15 1 17 37 333 667 1664 3551 10000 20000
16 1 20 40 355 733 2000 4000 20000 40000
17 121 43 367 Th6 2353 4726 31463 63147
18 122 45 400 1000 2561 5343 40000 100000
19 1 23 46 427 1056 2635 5472 52525 125253
20 12451 451 1123 3174 6370 65252 152525
21 1 25 52 707 1617 3216 6435 100000 200000
22 1 26 54 1000 2000 3447 T116 113152 226325
23 1 27 A7 1031 2063 3722 7644 200000 400000
24 1 30 61 1055 2132 4000 10000 213630 427461
25 1 31 62 1122 2245 10000 20000 263723 547646
26 1 32 64 1203 2407 20000 40000 306136 614274
27 1 33 67 1443 3106 34007 70017 400000 1000000
28 134 70 1537 3277 40000 100000 416246 1034515
29 13573 1746 3714 54031 130063 521055 1242133
30 1 36 75 2000 4000 64052 150125 724616 1651435
31 1 37 76 2033 4066 70064 160151 1000000 2000000
32 1 40 100 2056 4134 100000 200000 1023305 2046613
33 1 41 103 2130 4261 114053 230126 1347214 2716431
34 1 42 105 2221 4443 124061 250143 2000000 4000000
35 1 43 106 2465 5153 130035 260072 2027151 4056322
36 1 44 111 2501 5203 144074 310170 2457261 5136542
a7 1 45 112 3124 6250 150016 320035 3166444 6355111
a8 1 46 114 3512 7225 160047 340116 4000000 10000000
39 147 117 4000 10000 174022 370044 4055666 10133554
40 1 50 121 4034 10071 200000 400000 4632577 11465377
41 1 51 122 4045 10113 214301 430603 5251417 12523036
42 1 52 124 4211 10423 224502 451205 7514712 17231625
43 1 53 127 4504 11211 230604 461411 10000000 20000000

Table 3. These Nim-values Are in Octal (base 8), not Decimal.

465
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It remains to show that from any bad position in the 2m + 1 game there is a move to some
good position. If the position is bad because it corresponds to an N -position in the 2m game,
there is a move in that game to some P-position, and, by turning the Mock Turtle if necessary,
we obtain a move to a good position in the 2m 4 1 game. The other bad positions correspond
to P-positions in the 2m game, but have an odd number of heads. In this case, by turning
over the rightmost head, we obtain a position that gives an N-position in the 2m game. We
can now turn over at most 2m further coins to make this a P-position and then, if necessary
to obtain a good position, also turn the Mock Turtle. We have turned at most 2m + 2 coins in
all, but since we started with an odd number of heads and finished with an even number, we
have in fact turned over at most 2m + 1 coins, and so have made a legal move in the 2m + 1
game.

This result is equivalent to the statement:

Every nim-value for the 2m + 1 game is an
odious number, and the corresponding value for
the 2m game is obtained by dropping the final
binary digit.

THE MOCK TURTLE THEOREM

Why Moebius?

w1 4 0-4-1 5 6-8 2-3-5 8 3 7 ?—6—-2
@ O @I (I_D Lj (tjl O /j]Kt\ m O \t_/ \t) &t> \_} \_/ \Qlt}

Figure 5. Moebius Labels Make P-positions Easy to Find.

When restricted to 18 coins, the P-positions of the game with ¢t = 5 possess a remarkable
symmetry. To see this, name the heads of a position by the numbers shown in Fig. 5. For
example, the P-position with heads in just the first 6 places is oo, 0, £1, +4. In this notation
P-positions remain P-positions when their numbers are increased by any fixed amount, modulo
17, leaving oo unchanged. Adding 1 to the numbers oo,(0,£1,4+4 we find 0o,1,2,0,5, -3, so
that the position displayed in Fig. 5 is another P-position. The 15 positions shown in Table 4
yield a total of 15 x 17 = 255 P-positions in this way. It is also true that a P-position remains
a P-position if we interchange heads and tails in every place. The positions with all tails or all
heads are therefore both P-positions, giving 2 x 255 + 2 = 512 P-positions in all, distributed
as follows:

Number of heads 0 6 8 10 12 18
Number of P-positions 1 102 153 153 102 1.
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6 heads 8 heads
00,0 41 +4 00,0 +1 45 47
00,0 42 +8 00,0 +2 43 47
+1 +3 46 oo, 0 £3 +£4 X6
+2 +5 46 oo, 0 £5 +6 48
+4 45 47 +1 +2 +4 +£8
+3 +£7 48 +1 +2 +3 +5

+2 +4 +6 47
+3 £4 45 48
+1  +6 47 %8B

Table 4. The P-positions for Moebius.

Dropping the Mock Turtle (at co) we find that the P-positions for the game ¢ = 4 on 17
coins are distributed:

Number of heads 0 5 6 7 8 9 10 11 12 17
Number of P-positions 1 34 68 68 8 85 68 68 34 1.

We can also double the numbers (modulo 17) of any P-position to give another. Thus
00,0,1,2,—-3,5 of Fig. 5 becomes oc,0,2,4, —6,—7. We can invert them modulo 17; since
1/2 = —8,1/3 =6 and 1/5 = 7, Fig. 5 inverts into 0, 0o, 1, —8, —6, 7. In fact we can make any
transformation (modulo 17)

ar+b

cr+d’
Since these are known as the Mdbius transformations, we have named our game after that
distinguished mathematician.

ad — be = 1.

Mogul

On 24 coins the game for t = 7 displays even more symmetries. The P-positions among the
first 24 places are distributed as follows:

Number of heads 0 8 12 16 24
Number of P-positions 1 759 2576 759 1.

Figure 6 enables us to find the 759 P-positions with just 8 heads, or equally those with
8 tails. In either case the set of 8 places involved is called an octad. In Fig. 6 there are 35
pictures and each picture shows the 24 places colored in six sets of four (the 6 colors used
are black, white, star, circle, plus and dot). Any two sets of 4 (any two colors) in the same
picture make an octad: in particular this gives every octad with just 4 places in the last pair
of (black and white) rows, and this pair of rows themselves form an octad. By interchanging
this last pair of rows with the first pair, or the middle pair, of the same picture, we can now
find all the octads, since it can be shown that these pairs of rows form octads and that every
other octad meets at least one of them in just 4 places.
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Figure 6. Curtis’s Miracle Octad Generator.
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This Miracle Octad Generator, or MOG, is due to R. T. Curtis, but we have modified it
slightly for the Mogul player’s convenience. Various regular features of its arrangement make it
easy for the practised user to locate the unique octad containing any five given places. It seems
to be the case that the winner in 24-place Mogul need never play into a 12-head P-position.

Motley

This is the game in which any number of coins may be turned. When well played it lasts
at most one move, since we can turn all the heads to tails instantly! The nim-values are the
powers of 2:

1,2,4,8, 16,32, 64, 128,256,512, ...

so, when played with several rows, Motley is yet another disguise for Nim; the heads in a row
are hinary digits 1 in the number of beans in the corresponding Nim-heap.

Twins, Triplets, Etc.

We can also play the game Twins, in which we must turn ezactly two coins, or Triplets,
in which we turn exactly three, etc. The nim-value sequence for the game in which we turn
exactly ¢ coins consists of £ — 1 zeros followed by the nim-value sequence for the game in which
we turn at most t coins. Thus the nim-values for Triplets are

0,0,1,2,4,7,811,13,14,16,19,21,22,25, .. ..
We may think of the first £ — 1 coins as t — 1 Mock Turtles which may be used to fill out our

move to its proper complement of turns.

The Ruler Game

If the coins we turn must be consecutive but are otherwise unrestricted (except that the right-
most coin must be turned from heads to tails), then the nim-values are computed by the rule:

0
G(n—1)
G(n) =mex{ G(n—1) X G(n—2)
G(n—1) ¥ G(n—2) ig(:q -3)

and are found to be reminiscent of Dividing Rulers (Fig. 7 of Chapter 13, Vol. 2).
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Ili\l'll|i1|ll‘|ll|||
1214121812141211H612141218121

Figure 7. Nim-values for the Ruler Game.

If the coins are numbered starting from 1, G(n) is just the highest power of 2 dividing n.

Circumscribed Games

We can play any of these games under the additional restriction that the coins to be turned
may not be too far apart. Thus in Mock Turtle Fives we may turn up to three of five
consecutive coins. In Triplet Fives we turn ezactly three out of five consecutive coins. In
Ruler Fives we may turn 1, 2, 3, 4 or 5 consecutive coins. The nim-values for these three
games are:

Mock Turtle Fives: 1 2478 124781247812478...
Triplet Fives: 00124001240012400124 ...
Ruler Fives: 12141214121412141214...

These are parts of general patterns. Thus, Moebius Nineteens, for example, would have
the first 19 values of Moebius repeated indefinitely. This happens for all the above games
except the Ruler game; Ruler Fours, Sixes and Sevens have the same values as Ruler Fives,
while Ruler Eights to Fifteens all have nim-values:

121412181214121812141218121412181....

Turnips (or Ternups)

This game has a richer theory, but it is a great pity that the full theory is only needed by
people wealthy enough to play with a very large number of coins. The move is to turn over
any three equally spaced coins, the rightmost going from heads to tails as usual. Numbering
from 0 we find that the nim-values for 0 to 100 are:
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0-8 0 0 1 0 0 1 2 2 1
917 0 0 1 0 O 1 2 2 1
18-26 4 4 1 4 4 1 2 2 1
273 0 0O 1 0 O 1 2 2 1
3644 0 O 1 0 0 1 2 2 1
4553 4 4 1 4 4 1 2 2 1
462 7 7V 1 7T 7T 1 2 2 1
63-71 7 v 1 7 7 1 2 2 1
72-80 4 4 1 4 4 1 2 2 1
81-89 0 O 1 0 O 1 2 2 1
9-100 0 0 1 0 0 1 2 2 1 4 4

Table 5. The Nim-values for Turnips.

To find G(n) in general, we expand n in base 3:

n in ternary G(n)
¢=0orl ¢ ¢ ¢ ¢ ¢ ¢ ¢ |0
7=0,10r2 ? ? ? ? ? ? 2 1 the
? ? ? ? ? 2 ¢ |2 odious
? ? ? ? 2 ¢ o |4 numbers
? ? ? 2 o o @ |7 in
7 7 2 ¢ ¢ o ¢ |8 order
T2 9 ¢ ¢ ¢ ¢ (11

In words, G(n) = 0 if the ternary expansion of n has no 2-digit, but is the kth odious number
if the last 2-digit is in the kth place from the right, when we call n a k-number. The numbers
n whose ternary expansions have no 2-digit will be called empty numbers.

To see all this, note that G(n) is the mex of all the numbers

G(n—4) -T-g(n —20) ford =1,2,....
We show first that the putative value for G(n) is not one of these numbers, or equivalently
that
* *
Gn)+G(n—48)+G(n—24) # 0.

Since the nim-sum of three odious numbers is odious, this will be true unless one of

G(n),G(n —48),G(n — 24)

is zero and the other two coincide. But if the last non-zero ternary digit (z = 1 or 2) of § is
in the kth place, the expansions of n, n — 4, n — 24 look like:
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J

777x0060000

&
n
n—é
n— 20

279702722¢4
799177726¢4
70929222244

k
a: _ 77?x00000

n 297060400
n—03:4¢2771¢6¢dd 9
n—28) (7272066000

or

according as n has or has not a 2-digit in some j place, j < k. In the first case the three
putative nim-values are all the jth odious number, and in the second exactly one of them is
the kth odious number, so they cannot have zero nim-sum.

Now we know from our analysis of Mock Turtles that each odious number is the first number
not the nim-sum of two or fewer earlier ones. It suffices to show that if n is a k-number, we
d and n
than £. The subtraction sums in Table 6 show how to do this.

can choose 4 so as to make n -

Grunt

‘a-&—-e—m_
R = = ]
S — —

3 b =
3G -G 9
-3 66
[ I I N ]

[ =

[ N )

oo 9060 600 06O

0 00 00 060

24 i- and j-numbers or empty, for any i and j less

k
5 100010100100
n o $20662¢2¢d2¢¢

n—6: ¢1¢4¢d141¢01¢¢

n—25: ¢606¢6¢040¢000¢¢

k i
n . ¢2¢¢¢2020104¢

n—6: 7777777777246

n—125: 0000000600064

o 0264424200000

n—8: 7777772217246

n—25. 00000006001¢a

In the last two cases above, the first$ of
the last line is whichever of 0 or 1 makes

" n—26 have the same parity as n. Then &

can be found from n and n—26.

Table 6. How to Make n — 4, n — 24 into i- and j-numbers, or Empty.

In a move of this game one must turn over four symmetrically arranged coins of which the
first must be the leftmost coin of the game and the last must be turned from heads to tails.
Numbering from 0 the restriction is that we turn numbers

and we find the nim-values:

n 0

12

345

6

{

1
0,a,m —a and n, 0 < a < En,

89 10

Gn) 00001021021 0

11 12 13 14 15

2

1

16
3 2 1 3

17 18 19 20 21 22 ...
2 4 3 0 4 3 ...
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Figure 8. A Winning Move in Grunt.

Since G(0) = 0, G(n) can more easily be computed as the mex of all numbers of the form
* 1
Gla)+G(n—a),0<a< 3™

and so the game is a disguise for Grundy’s Game (see Chapter 4, Vol. 1} in which any heap
may be split into two smaller heaps of different sizes.

Sym

As an example where the nim-values display no recognizable pattern, let us turn over any sym-
metrically arranged set of coins, not necessarily including the leftmost coin, number 0. We find,
with thanks to Donald Knuth for the last four values
n=0123456 7 8 910111213 1415 1617 1819 20 ...
Gn) =12436781618 253211 64 31 12810 256 5 512 28 1024 ....
The reader can also try to solve the game Sympler in which the leftmost coin is to be included
in the symmetrical set of coins turned.

Two-Dimensional Turning Games

All our one-dimensional games were played with the restriction that the rightmost coin to be
turned was to be changed from heads to tails. In the two-dimensional games the corresponding
requirement is that the most “south-easterly” coin which is turned must go from heads to tails.
In such games we’ll write G(a,b) for the value of a coin in row a and column b.

Acrostic Twins

We start with a very simple game. The move is to turn two coins which must either be in
the same row or in the same column. The typical entry in the nim-value table is therefore the
least number not appearing earlier in the same row or column, and we find Table 7. So we see
that Acrostic Twins defines nim-addition:

G(a,b) =atb
Turning Corners

This is a much more interesting game. The move is to turn over the four corners of any
rectangle with horizontal and vertical sides. The nim-values can be computed using

G(a,b) = mex {g(a’, b) I G(a,b") ¥ (a', b’)} ,

where a’ and b are any numbers respectively less than a and b (see Fig. 9). Table 8 gives
values for a and b less than 16.
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Table 7. How to Play Acrostic Twins.
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Figure 9. A Typical Move in Turning Corners.
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0 0 0 o 0 0 0 0 0 0 o o 0 0 0 0
0 1 3 4 9 6 7T 8 9 10 11 12 13 14 15
0 2 8 10 11 9 12 14 15 13 4 6 7 5
0 3 1 2 12 15 13 14 4 7T 5 6 8 11 9 10
0 4 8 12 6 14 10 11 15 3 T 13 9 ) 1
0 5 10 15 2 T 8 13 3 6 9 12 1 4 11 14
0 6 11 13 14 8 5 3 7 1 12 10 9 15 2 4
o 7 9 14 10 13 3 4 15 8 6 1 9 2 12 11
0 8 12 4 11 3 7T 15 13 H 1 9 6 14 10 2
0 9 14 7 15 6 1 8 5 12 11 2 10 3 4 13
0 10 15 5 3 9 12 6 11 14 4 2 8 13 7
0 11 13 6 7T 12 10 1 9 2 4 15 14 5 3 8
0 12 4 8 13 1 9 3 6 10 2 14 11 7T 15 3
0 13 6 11 9 4 15 2 14 3 9 7 10 1 12
0 14 7T 9 5 11 2 12 10 4 13 3 15 1 8 6
0 15 5 10 1 14 4 11 2 13 T 8 3 12 6 9

Table 8. Have You Learnt Your Tims Table?

Nim-Multiplication

Observing that the nim-value G(0,n) = 0, while G(1,n) = n, we guess that this might be a
kind of multiplication, so we shall write

a¥b
(and you will read “a tims b”) for the nim-value G(a, b) of the general coin in Turning Corners.
We shall call this the nim-product of a and b.
It is shown in ONAG (Chapter 6) that this remarkable operation has all the usual algebraic
properties of multiplication, and in particular obeys the distributive law
ai(bic):aibiaic

with nim-addition. For example

7¢557%6=13%3=14

But note, for example, that the nim-sum of 6 and 6 is not two sixes but no sixes, since 1 1
is not 2, but 0.




476 Chapter 14. Turn and Turn About

In computing nim-products of larger numbers, the Fermat powers of 2,

2, 4, 16, 256, 65536, 4294967296, ..., 272,

play a role similar to that played by all the powers of 2 in nim-addition.

nim-addition if N is any power of 2 we have:

Nin=N +nforn< N,
NN = 0.

For nim-multiplication, if N is any Fermat power of 2 we have:

N¥n=Nxnfor n<N,

Tk 7_3 T
I\Xf\—zf\.

Recall that in

For example, 16 ¥ 5 = 80, as usual, but 16 X 16 = 24. Table 9 gives products of powers of 2.

1 2 4 3 16 32 64 128 256
2 3 8 12 32 48 128 192 512
1 8 6 11 64 128 96 176 1024
8 12 11 13 128 192 176 208 2048
16 32 64 128 24 44 75 141 4096

32 48 128 192 1 52 141 198 8192
64 128 96 176 7h 141 103 185 16384
128 192 176 208 141 198 185 222 32768
256 512 1024 2048 4096 8192 16384 32768 384

Table 9. Nim-products of Powers of 2.

Swirling Tartans

Figure 10 indicates the coins which may be turned in a typical move of this game. The boxed
places form what we call a tartan. In general we select a certain number of rows and a certain
number of columns and the places of the tartan are where our chosen rows meet our chosen
columns. In Swirling Tartans we may turn the coins of any tartan, but in other games there
will be restrictions on the rows and columns we may choose. Table 9 is actually a table of
nim-values for Swirling Tartans. This is a particular case of the following theory.
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Figure 10. A Tartan.

The Tartan Theorem

We can build a tartan game, A x B, from two one-dimensional turning games, 4 and B, by
specifying that the rows of the tartan shall correspond to the coins which may be turned in
a move of game A and the columns to the coins which may be turned in a move of game B.
Taking both A and B to be the game of Motley, in which any sets of coins may be turned, we
see that

MOTLEY x MOTLEY = SWIRLING TARTANS.

It follows from the Tartan Theorem that the nim-values for Swirling Tartans are the nim-
products of those for two games of Motley—since the latter nim-values are just the powers of
2: this justifies our assertion about Table 9. More generally:

the nim-values for the tartan game A x B are
the nim-products of those for A and B:

Gaxpl(a,b) = Gala) X Gp(b).

THE TARTAN THEOREM
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The proof, which we do not give, depends on the following characterizing property of the
nim-product a ¥ b.

If 1, x5, ... are numbers for which
%
a = mex(a + ;)
and y,ys2 . .. are numbers for which
P
b = mex(b + y;)
then we have
a¥b=mex(a¥bta £y
- = g JJJ

This can be deduced from a result on p. 55 of ONAG.

Rugs,
In Tur

Carpets, Windows and Doors

ning Corners we turned over the corners of a rectangle, so that

TURNING CORNERS = TWINS x TWINS.

In Rugs we turn over all the coins in some solid rectangle, in other words the tartan must be
defined by a block of consecutive rows and a block of consecutive columns. Since in the Ruler

Game

and so

a move was to turn over a block of consecutive coins, we have

RULER x RULER = RUGS,

the nim-values are those of Table 10.

11 3§ 12 8 13

Table 10. A Rug with a Table on It.
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A carpet is a tartan in which both rows and columns form symmetrical sets, as in Fig.
11, and the corresponding game, Carpets, has therefore the nim-values of Table 11:

CARPETS = SYM x SYM.

Figure 11. A Carpet.

In Fitted Carpets one is only allowed to turn carpets which fit snugly into the corner of
the room, so

FITTED CARPETS = SYMPLER x SYMPLER

whose analysis is left to the reader.
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Figure 12. A Move in Windows.
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In the game Windows we turn the nine coins where three equally spaced rows meet three
equally spaced columns, as in Fig. 12, so that

WINDOWS = TURNIPS x TURNIPS.

The nim-values form the most complex system we have yet discovered. To calculate the
outcome of a given position we must perform no fewer than four successive operations:

1.

Expand the two coordinates of a head in base 3 and find the last 2-digit (if any) in each.

. Replace the coordinates by the corresponding odious numbers (or zero). This involves a

further expansion, in base 2.

. For each head find the nim-product of the two numbers so obtained.

. Find the nim-sum of the numbers so found for all the heads.

In all these games there has been the condition that the coin most to the South-East in any
move be turned from heads to tails. So that our next game deserves its name we will play it
“upside-down” and impose that condition on the most North-East coin. The move in Doors is
to turn over the twelve coins where any three equally spaced columns meet four symmetrically
arranged rows, which must include the bottom row, as in Fig. 13. This shows that

DOORS = TURNIPS x GRUNT

"
s
i
i
i
i
i

-
=

L o L

Figure 13. A Typical Move in Doors.
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so you should soon be able to find the nim-value of the Doors position in which there is a

single head in the 100th row and 100th column. (Beware: the first row is row number 0.)

Acrostic Games

-dimensional game out of two one-dimensional turning

games, A and B. In the acrostic product A U B, the coins we turn must either all be

There is another way to build a two

in the same column or all be in the same row. If the coins are all in a column, they must

00100122100100122144144122100100122100100
00100122100100122144144122100100122100100
f1111111111111111111111r1 111 1r11r1171111111111
00100122100100122144144122210010012221000
00100122100100122144144121210010012221000
f1111111111111111111111r1 111 1r11r1171111111111
22122111122122111111111111122122111122122
22122111122122111111111111122122111122122

f11111111111111111111111r1 111 1r11r117117171111111
00100122100100122144144122100100122100100
00100122100100122144144122100100122100100
f11111111111111111111111r111r11r11r1171111111111
00100122100100122144144122100100122100100
00100122100100122144144122100100122100100
f1111111111111111111111r1 11r11r11r117117171111111
22122111122122111111111111122122111122122
22122111122122111111111111122122111122122

f11111111111111111111111r 111111 1r1171171717111111
44144111144144111111111111144144111144144
44144111144144111111111111114414411144144
t111111111111111111111111111111' 111111111111
44144111144144111111111111144144111144144
44144111144144111111111111144144111144144
11111111111111111111111111111111111111111
22122111122122111111111111122122111122122
22122111122122111111111111122122111122122

t11r11111111111111111111111r1r1r11r1 117111111111
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t11111111111111111111111111111111111111111
00100122100100122144144122100100122100100
00100122100100122144144122100100122100100
f1r111111111111111111111111111111111111111
22122111122122111111111111221221111122122
22122111122122111111111111122122111122122

t1111111111111111111111r1 111 1r11r117117171111111
00100122100100122144144122100100122100100
00100122100100122144144122100100122100100
f1111111111111111111111r1 11r11r11r117117171111111
00100122100100122144144122100100122100100
00100122100100122144144122100100122100100

Table 12. A Field of Turnips.
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correspond to a move of game A; if all in a row, to a move of game B. We have already met
one game of this type:

ACROSTIC TWINS = TWINS U TWINS.

In Acrostic Turnips we must, of course, upturn three turnips which are equally spaced and
either in the same row or in the same column, the furthest from the corner of the field being
turned from top to tail.

ACROSTIC TURNIPS = TURNIPS U TURNIPS.

The first 1681 nim-values are displayed in Table 12. It is not hard to prove that a row or
column that begins with zero repeats the nim-sequence for Turnips itself, while the values not
in such a row or column are 1.

Stripping and Streaking

We have no idea how to play the general acrostic product AUB, even when the one-dimensional
games A and B are fully understood. But if it just should happen, as sometimes it does, that
every nim-value of a place in each of your games is either 7 or a power of 2, we can offer you
some help. We first discuss two easy games of this kind.

In Streaking we turn over any collection (streak) of coins all in the same row or column,
so that

STREAKING = MOTLEY U MOTLEY.

Since the nim-values for Motley are exactly the powers of 2, and each nim-value for Streaking
is the mex of all numbers that are sums of earlier nim-values from the same row or earlier
nim-values from the same column, we find Table 13.

In Stripping, the coins we turn must be consecutive (form a strip) in either a row or a
column. The entries in Table 14, of nim-values for

STRIPPING = RULER U RULER,

can apparently be obtained from entries in Table 13. How do we explain this?

Uglification and Derision

We introduce an ambitious distraction. We shall call an entry in Table 13 (or 14) the ugly
product of the two powers of 2 that head its row and column, and write

45 8 = 10 (“four uggles eight is ten”)
for example. Ugly products of other numbers can then be found using the distributive law:
411 = a0@teiy=10fs5t1a=11
# ¥k *
5011 = (441011 =11+11=0.

The latter equation shows that 5 and 11 are deriders of zero. An uglification table up
to 16 is given in Table 15.
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256
257
258
260
264
272
288
320

128

64
6

32
33

16
17
18
20

129

5

66 130

34
36
40
16
30
144

10

(B}

132
136

68

10

72
30

20

18
34

17
33

16
32
64
128

256

144

40

36
68
132
260

160

32
160

66

130
258

64
320

136

264

129
257

128

272 288

Table 13. Streaking Values.

16
17
16
18
16
17
16
20

[Eeel

(B}

LD

LD

10

(B}

[Eee}

[Egel

(B}

16
17
16
18
16
17
16

(B}

LD

[Eon}

10

[t}

[t}

[Ege}

(B}

17 16 18 16 17 16 20 16 17 16 18 16 17 16 3

16

Table 14. Stripping Values.
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O 0 0 0 06 0 0 06 06 ¢ 0 0 0O 0 0 0 0
ol 1 2] af4]ls e[ 78] 9 1011 12 13 14

ol 2] 1] 35|77 al6|9oln 8 10 12 14 13

0 3 3 01 2 2 1 1 2 2 1 0 3 3

o 4] 5| 1] 2] 6 7[3[w|lie 15 1 8 12 13 9/[18]
0 5 7 2 6 3 1 4 2 7 5 0 4 1 3 6 2
0O 6 4 2 7 1 3 5 3 5 7 1 4 2 0 6 3
L1} 7 6 1 3‘ 4 5 211 (12 13 10 8 15 14 919
0891&231141213514671520
0 9 Il 214 7 51212 5 714 211 9 0 4
o1 8 215 5 7 1313 7 515 2 8 10 0 5
011 10 1 11 0 1 10 5 14 15 4 14 5 4 15 21
012 12 0 8 4 4 8 14 2 2 14 6 10 10 6 6
013 14 312 1 115 6 11 8 510 7 4 9 22
0 14 13 3 13 3 0o 14 7 9 10 4 10 4 7 9 23
0I5 15 0 9 6 6 915 0 0 15 6 9 & 6 7
{}E&mﬂ i[i8] 2 3[1w[20] 4 521 6 22 23 7] s

Table 15. The Uglification Table up to 16's.

For larger numbers we may use the following rules:

If N is any power of 2 and n < N, we have
. 1 e .
N + 2" if n is odious

N':FJ n= 1
[EnJ if n is evil,

NON = F\W .
2

The rows and columns of Table 15 which correspond to 7 and powers of 2 have been printed
in bold type and their intersections have been boxed. We shall use the following properties of
these rows.
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1. The entries in any bold row are distinct. In
symbols, if a is 7 or a power of 2, and b # b,

* * -
then alU b # au b.
2. Each hoxed entry is the mex of all previous
entries in its row and column. That is, if both a

and b are 7 or powers of 2, then al) b is the mex
of all numbers of the form

* *
aUboraub, o’ <a, b <b

These are used in proving the following theorem.

If every nim-value of a place in each of A and B
is 7 or a power of 2, then the nim-values of the
acrostic game A U B are obtained by
uglification of those for A and B:

Gaun(a,b) = Ga(a)D) G (b).

THE UGLIFICATION THEOREM

To see this, let the typical move in game A or B turn the coins in places

] < dag < ...<d

o by <by<...<h

respectively. We will denote the nim-values of these places by

N, g, ..., O

and B1,B2,...,08

respectively. Then the nim-value G(a, b) in the acrostic product AUB is the mex of all numbers
of the form

* * * *
aU 3 +au 8+ ...

or * K "
al B +al By + ...,

that is to say the mex of all numbers of the form

* ¥ =
aufs or auf,
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where

* #*
] +az + ...

* "
= h+bB+....

e R
I

Now « is the mex of all numbers @ which arise in this way, and 3 is the mex of all numbers
3, so that every o’ < « is one of the numbers & and every 3 < 3 is a 4. But each of o and 3

#*
is either 7 or a power of 2 by assumption, so that certainly aU 3 is the mex of all numbers of

the form

* *
a'Uforau .

* *
Also, a is distinct from all the numbers @, and so aU 3 is distinct from all the numbers au /3,

- * = * . .
and similarly from aU 3, and so alJ 3 is their mex also.

This explains the values we found for Stripping and enables us to discuss a few similar
games. For instance, in Strip and Streak, where we may turn coins in a horizontal strip or

a vertical streak, the first few nim-values are as in Table 16.

1 2141218121412 116
21252129 2122%521 217
4 5 4 2 4 5 410 4 5 4 2 4 5 418
8 9 810 8 9 8 4 8 9 810 8 9 820
16 17 16 18 16 17 16 20 16 17 16 18 16 17 16 8 16 17 ...

Table 16. Strip and Streak.

Tahle 17 gives the nim-values for Acrostic Mock Turtle Fives in which we turn up to
three coins provided that these are all contained in some horizontal or vertical strip of five.

12 4 7 812 4 7 812 4 7
21 5 6 921 5 6 921 5 6
4 5 2 31045 2 31045 2 3
76 3 211 76 3 211 76 3 2
89 10 11 4 8 9 10 11 4 8 9 10 11
12 4 7 812 4 7 812 4 7
21 5 6 921 5 6 921 5 6

Table 17. Acrostic Mock Turtle Fives.

W= b =

[l ]

9...




Extras

Unlocking Doors

For Turnips, Table 5 shows that G(99) = 4, while for Grunt, the discussion of Grundy’s Game
in Chapter 4 shows that G(99) = 5; so a coin in the 100th row and 100th column of Doors has
value

4 tims 5 = 2.

Sparring, Boxing and Fencing

Turning games can be played in any number of dimensions. We mention just three 3-
dimensional games. In Sparring we turn over any two coins in the same row, column or
vertical, that is to say the two ends of a “spar.” The typical entry in the nim-value table is
the mex of previous entries in its row, column or vertical, so we have

G(a,b,c) —atbie

In Boxing we turn the eight corners of a rectangular “box”. This is the 3-dimensional
version of Turning Corners and its nim-values are three-term nim-products

Gla,be) =a¥bXe.

In Fencing we turn the four corners of a rectangular “fence” whose edges are parallel to
any two of the three coordinate axes. It can be shown that

g(a,b,c)=b§cic§aia§b.

In each case the furthest turned coin from the origin must go from heads to tails.

“Coins™ (or Heaps) with Infinitely Many (or 22%) “Sides™

“Coins” (or Heaps) with Infinitely Many (or QZN) “Sides” may be used to give lots of new
“turning” games whose theory also involves Nim-multiplication. Thus if the move is to alter
at most two of the heaps H_,, Hy, H; ... of which the rightmost one must be reduced, the
P-positions are those with

H{}iHliHQ-T-...=Oand[]§H011§H112;€<H2-t...=H_l

488
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Chips and Strips

There is some ill a-brewing towards my rest
For I did dream of money-bags tonight.
William Shakespeare, The Merchant of Venice, 11, v, 17.

Many of the games in this chapter are derived in some way from Nim. Although Nim is usually
played with heaps of chips it can also be played with coins on a strip, the move being to shift
any coin leftwards any number of squares. Figure 1 shows the same Nim position in both
versions. Moving a coin leftwards corresponds to reducing a heap.

We ohtain many generalizations of Nim by varying the conditions under which heaps can
be reduced, or coins moved.

oY==
7 3 3 %

Figure 1. Two Forms of Nim.

The Silver Dollar Game

In our first variant we allow at most one coin per square and do not allow one coin to jump
over another. It can take quite a long time to discover that this is a cunning disguise for Nim,
related to the game of Poker-Nim in Chapter 3. The sizes of the Nim-heaps are the lengths of
alternate gaps between the coins starting from the rightmost coin (Fig. 2).

Observe that any decrease of one of these numbers is possible (by moving the coin at the
right end of the gap) and that some increases are also possible (by moving the coin at the left
end of a gap). We've indicated sample moves of both types in the figure. But just as in the
theory of Poker-Nim, the increasing moves are mere reversible delaying moves and the winner
wins by playing Nim.

491
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o3 4151
TN TN

LT 777 S T 77 ST T 7o ] & 772

ey —r -4

< o £ 7

Figure 2. The Silver Dollar Game Without the Dollar.

N.G. De Bruijn has made the game more interesting by turning the leftmost square into a
moneybag capable of holding any number of coins and making one of the coins a Silver Dollar,
more valuable than all the others put together. Now the leftmost coin not already in the
moneybag, may be put into the moneybag, as a move. The person who hags the dollar loses
the game, because we also allow another move—pocket the moneybag!

\\\\If

7 :
VSTV, =T = S A A, =L = =

Figure 3. De Bruiju's Silver Dollar Game.

In this version the moneybag counts as a full square when the first coin to the right of it
is the Silver Dollar; otherwise as an empty one (it’s because we don’t want to put the dollar
into the bag that we think of it as full when the dollar is the nearest coin to it!) If we win the
Nim game we won't be forced to put the dollar into the bag.

If we allow whoever bags the dollar to pocket the bag all in one move, we count the bag
as full only when there’s just one other coin between it and the dollar. (We don't want to
put this coin in the bag because our opponent will make sure it is immediately followed by
the dollar!)

Find the winning moves in Fig. 3 in both versions.

Profit from Gaming Tables

What do you do when you meet a game that’s not analyzed in Winning Ways? You might
be very lucky and get the hang of it after your first few games, but if you can’t quite see
what’s going on and our theories don't seem to provide much of a clue, the best thing to do
is to compile a gaming table. To do this profitably can take some skill in organizing the
information. There’ll be some varied examples in this chapter.
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Antonim

Antipathetic Nim is Nim in which no two heaps are allowed to have the same number of
chips. Of course, we don't notice empty heaps, so if you want to play it with coins on a
strip the condition is that no two coins may be on the same square unless this square is the
moneybag (square 0).

We can analyze 3-coin Antonim in a single table (Table 1). The headings are the sizes of
two of the heaps and the entry is the unique size of heap that completes these to a P-position.
The typical entry is filled in as the least number not coinciding with any earlier entry in the
same row or column, nor coinciding with either the row or column heading. An X denotes an
illegal position. There is an obvious pattern showing that:

(a,b,¢) is a P-position in Antonim just when
(a+1,b+1,¢+ 1) is a P-position in Nim.

0 1 23 4 5 6|7 & 9 10|l 12 13 14
olo 2 1]4 3 6 58 710 91211 14 13
12 x ols 6 3 4|9 10 7 813 14 11 12
201 0 x|e s a4 3|lw o9 & 7l 13 12 11
14 s 6|x 0 1 2011 12 13 14| 7 8 9 10
4 3 [} 510 X 2 112 11 14 13 & To1o9
slle 3 41 2 x ol13 14 1 12)9 10 7 8
6l s a4 3|2 1 X|14 13 12 1|0 5 8 7
70s o | 1213 14X 0 1 2|3 4 5 6
8l 7 10 912 11 14 13 X 2 1|4 3 6 5
9 H10 T B |13 14 11 12 1 2 X 0 5 6 3 4
10 9 8 714 13 12 11 2 1 0 X & 5 4 3
12 15 47 8 9 10]3 4 5 6/ x 0 1 2
1211 14 13/8 710 9/4 3 6 5|0 x 2 1
13014 11 12/9 10 7 85 6 3 4|1 2 X 0
1413 12 110 8 & 7|6 s 4 3|2 1 0 x

Table 1. P-positions for Three-Coin Antonim.

For Antonim with 4 coins we need a 3-D table, which we can build in layers. The next
layer (Table 2) suggests that there is unlikely to be a simple rule, even for positions

(1.‘ a, b.‘ C)!

so we have cut short the further layers (Table 3).
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o X | 203 4 5 6|7 8 9 10|11 12 13 14
e _é_. 5 5 . 3._ - 9_10__?_ﬁ ETETSETEET
I X X X)X X X X/ X X X X/X X X X
200 X X|4 3 6 5|8 7 10 9|12 11 14 13

3l s x 4|X 2 0 7|6 9 8 1|10 13 12 15
401 6 X 302 X 7 05 12 11 14| 9 & 15 10
503 X 6|0 7 X 2|4 11 12 13| 8 & 10 16
6l 4 X 5|7 0 2 X3 14 13 12)15 10 9 8§
TH 9 X Bl 6 5 4 31 X 2 0 15|14 lﬁ__}? II_
B10 X 709 12 11 14| 2 X 3 0|3 4 16 6
8| 7 X 108 11 12 13| 0 3 X 2| 4 5 6 17

10 8 X 911 14 13 12|15 0 2 X| 3 6 5 4
13 X 1210 9 8 15(14 5 4 3| X 2 0 7

12|14 X 11|13 8 9 10|16 4 5 6| 2 X 3 O

1311 X 14112 15 10 917 16 6 5| 0 3 X 2

1412 X 13 {15 10 16 &1l 6 17 4| 7 0 X

Table 2. P-positions (1, a,b,c) for Antonim .
It’s not hard to show that the P-positions with numbers < 7 are just
(0)12, (0)34, (0)56, 135, 146, 236, 245,
1234, 1256, 1367, 1457, 2357, 2467, 3456
(0)123456.

The 3-heap P-positions are the lines of Fig. 4, counting the top node as 0; the 4-heap ones

are the complements of lines, counting it as 7.

Synonim

In Sympathetic Nim all heaps of the same size must be treated alike—if you reduce one
heap of a given size you must reduce all heaps of that size and by the same amount (no move
may affect heaps of different sizes). In the strip version the move is to take all the coins from

some square and put them on to any earlier square.
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Synonim
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i
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s
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7110

i

< k<5,

Table 3. P-positions (k,a,b, ¢) for Antonim, 2

7. ©or0)

Figure 4. Fano's Fancy Antonim Finder.




496

Chapter 15. Chips and Strips

&

This game need not detain us long. Since all the heaps of a given size must be treated in
the same way they may be regarded as a single heap. A move reducing this heap to the size
of an already existing heap has the same effect as removing the heap entirely. We might as
well say that the heaps must always be of different sizes, so

Simonim

SYNONIM is
just a synonym

for ANTONIM!

SImilar MOve NIM, or Simonim, was rediscovered by Simon Norton. It is just Nim with the
additional feature that a player may make any number of moves provided that these are all
exactly similar, i.e. that they all reduce some number a to another number b. It differs from
Synonim in that we are not required to reduce all the heaps of a given size. If we play it with
coins on a strip the rule becomes that any number of coins may be moved from any square to

any earlier square, occupied or not

(S (O L =

L =R )

t1
12
13

. Table 4 is a bit harder to compute.

0 1 2 3 4 5 6 7 8 9 10 11 12
Bl 2 1 4 3]6 5 8 710 9 12 11
2 3 ol £ 7 8 5 611 12 9 10
1 0 4% T 1208 7 6 5 12 11 10 9
4 Tl32 _____ o] 9 10 11 12 5 6 7 8
3E¢4 Zio 1|l 9 1z o6 s 8 7
6 7 8 91011 0 1 2 3 415 12
s 8 710 9 012 2 1 4 31 16
g§ 5 6 11 12 1 2 9 0l7ﬁ3k34
7 6 51211 2 1 0105“51354 3
0 1112 5 6 3 _?’19780 {2
9 12 11 6 5 4 35&10 E’ o 7 2 1
2 910 7 8 3[ui3 4 1 2 6 0
1110 9 8§ 75112 6l 4 3 2 1 0 5
14 15 16 17 18 19 20 21 22 23 24 25 26

Table 4. P-positions for Three-Coin Simonim.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
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As usual we try to fill in the least number not seen earlier in the row or column (or diagonal,
if the entry is on the diagonal). But at most one entry n (written #) in a row may equal its
column label, at most one entry m (written [ m) in a column may equal its row label and only
the diagonal entry 0 may coincide with its row and column label.

When you've stared at Table 4 for an hour or two you'll notice various patterns which
make the structure crystal clear. The solid dividing lines mark the closing up of the leading

1x1, 5x5, 13x13,

and, in general

2" — 3 by 2" — 3

portions, which form Latin squares. The arrowed entries fall into 2 x 2 boxes. Various portions
of the table resemble the nim-addition table.

After we'd extended the table into three dimensions and enlarged it in two, we were able to
work out a general rule for 4-heap Simonim. With Simon’s help we were even able to prove it!

Partition the positive integers into ranges
1, 2-3,4-7, 8-15, 16 -31, ....

Then transform the Simonim position as follows:
Replace the first occurrence of a number n by n’,
a second occurrence by n”, and a third by n"’, where

n+ 3 if this is in the largest range that is
represented in the transformed position,

n' = ¢ mn-+1 if this is in the next largest range that is
represented in the transformed position,
n otherwise.

the largest number in the range before n', or the
" next-to-largest number in this range,

if n is the next-to-largest number

in the original position.

n' = the largest number from the range before n”

The original position will be a P-position in SIMONIM just
if the transformed position is a P-position in NIM.

RULE FOR 4-HEAP SIMONIM
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In applying the rule it’s best to write the numbers in descending order. What should we
do from
n 16 9 4 17
We find n 19 10 4 1

whose nim-sum involves 16, so it can’t be a P-position. We must therefore decrease 16 to
some value x for which z + 3 won't be in the 16 — 31 range. Then

1
1

n x 9
n 7 1

b | NTEN

2

so ? must be 12 £ 541 = 8. Since this is in the largest range to appear in the transformed
position,
x must he 8 — 3 = 5.

Let’s do

n 9 9 7 2

{ ' 12 102 }nim sum B
n' 7 i )

We can change the nim-sum to 0 by changing 2 into 1, 10 into 9 or 7 into 4, yielding the
positions

n 9 9 7 1 9 9 6 2 9 3 7 2
n' 12 10 1 12 9 2 12 4 10 2
n' 7 7

A really tricky example is

n 44 33 22 11
n' 47 36 23 11 nim-sum 23

There’s no hope of changing any of the nim-values 47, 36, or 11 by 23, while if we remove the
22 heap:

n 44 33 0 11
n 47 36 0 12 nim-sum 7

we don't arrive at a P-position. The trick is to equalize the two small heaps:

n 44 33 11 11
n' 47 36 12
n'’ 7

}nim—sum 0.
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Figure 5. Stacks on Stairs.

Staircase Fives

You play this with coins on a staircase (Fig. 5). The move is to take any number, less than
five, of coins from one step and put them on any lower step, less than five stairs away. The
winner is the one who puts the last coin on the bottommost step.

If there are only 4 coins and 5 steps, the “five” restrictions don’t matter and the game
reduces to Antonim. A study of the upper 5 x5 portion of Tables 1-3 provides an unexpectedly

simple rule:

Mentally interchange the coins on steps 2 and 4.
Then the position is a P-position just if the sum
of the heights of all the coins is a multiple of 5.

Thus you should arrange that after your move, if there are

@coinson 0, bon 1, con 2, d on 3 and e on 4,
then

0O-a+l-b+4-c+3-d+2-¢

is divisible by 5.
The rule continues to apply with more coins and more steps provided we interchange steps
5n + 2 and 5n + 4.
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Twopins (pronounced ““Tuppins’)

is a bowling game which generalizes Kayles (-77) and Dawson’s Kayles (-07) in Chapter 4.
This time the pins are set up in columns of 1 or 2 and the condition is that, as in Kayles, a
legal shot must remove just 1 or 2 adjacent columns. But there is the additional rule that it
is illegal to remove just a single pin.

. 3% . ¥* AE - » %
Figure 6. A Game of Twopins.
In discussing Twopins configurations we’ll use

« for a column of one,
% for a column of two,

so that the 2™ possible configurations of n non-empty T'wopins columns are represented by the
2™ sequences of nx's and -'s. For instance we find

o =0, ¢ =00 —ex —eke =%, kex =% % =(),

and happily *, %%, %% % have values %, %2, % 3; however, % * %% = % . Fortunately we don’t
need to list all possible sequences separately because there are several useful equivalences. For
example it’s easy to see that

T e Ve Vo W Tt Ve Vo W ) and Bl
all behave the same in play, while
e TR Tavaraa e vl behaves like PSS g ke T
There is also a useful Twopins Decomposition Theorem:

After these theorems you can suppose that all strings have stars at each end and that
dots come in internal blocks of three or more. Also the sequence (x)™ of n stars behaves like
the Kayles position K, while the sequences (-)" and #(-)"~** behave like D, in Dawson’'s
Kayles, so you can read off their values from Chapter 4. Our Twopins-Wheel (Fig. 7) gives
the nim-values of all other Twopins sequences of length 9 or less, except

%eeekesex nim-value 1
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All our equivalences remain valid in misére play, but the entries in the Twopins-Wheel
should be replaced according to the scheme

For read genus For read genus
0 0 0 0 2492 0
1 1 1 1 3+2
2 2 2 2 k1k322530 2
3 3 3 3 2,21 =d 3
4 2,321=k 4% 4 32320 4046
5 k+1 5 kd3y210 53146

Twopins has applications to Dots-and-Boxes (Chapter 16) and to Cram.
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Cram

Cram is Martin Gardner’s name for impartial Domineering. It has also been called Plugg and
Dots-and-Pairs, and is associated with the names of Geoffrey Mott-Smith, Sol Golomb and
John Conway. You play it just like ordinary Domineering (Chapter 5; Martin Gardner called
it Crosscram) except that either player may place his dominoes in either direction. You just
cram them in however you can.

If you start with a rectangle with even dimensions, then there's a simple symmetry strategy
for the second player if the aim is to be the last to move. If one dimension is even and the
other odd, then the first player wins with the same strategy after placing her first domino at
the centre of the board.

It helps to see what’s going on if you replace the available regions hy graphs with nodes
for squares, joined by edges when they're adjacent, as we did for Col (Chapter 2) and Snort
(Chapter 6).

In this form the move is to delete two adjacent nodes and all edges running up to them,
and you can play the game on arbitrary graphs. Only the abstract structure of the graph
matters, so that many differently shaped regions can have the same graph, e.g.

, and hmﬁ:mgﬂphy

This graph, like many others, is a caterpillar. Formally, a caterpillar is a graph whose
body consists of a chain of nodes, some of which may have tufts (or legs) i.e. 1 or more edges

e X e ¥ s X X X %X+ ¥ X ¥ - v

a % + ¥ £ X ¥ ¥ X + X ¥ ¥ x = 0

Figure 8. Even a Complicated Cram Caterpillar is a Twopins Position.
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leading to otherwise isolated nodes. Luckily, even the most complicated caterpillar (Fig.
equivalent to a Twopins configuration, by letting

= replace each untufted body node, and
s represent any tufted one.
In this notation our Twopins equivalences hecome

* - = B e ) * =

ST T

% <>i IC

I

8) is

the last of which we might indicate in a single picture, using thin lines for edges which can all
be omitted without affecting its value.

e

The balloons in our pictures need not be caterpillar-shaped and can even be allowed to
meet, so our last identity becomes

KX
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The diagrams in Fig. 9 have similar properties for example, the deletion of all thin edges
in a diagram will not affect its value.

{5941

307

Figure 9. A Packet of Cram Crackers.

Table 5 gives values of a number of Cram positions. The dotted line indicates a chain of
n edges where n is at the head of the table. We've given the full genus so that you can play
Misére Cram. We use the letters

k  for 2,321 (position K5 in Kayles),

d for 2521 (position Dy in Dawson’s Kayles),

e for 2531 (arises in the Fz-Officer’s Game, -06), and
f for 251 (arises in Flanigan’s Game, -34)

in the last column, to list the games which are not Nim-heaps.

Some other values appear in Fig. 10. The ladder values in particular are easy to remember
and the remark about tufts makes them extremely useful.
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number of edges
in the dotted line 01 2 3 4 5 6 non-Nim-heaps
o 11 2 0 3 1 t -
T l2e s o5 o1z e k
L TP U k
n—n 11 4148 3 {057 22 k41, k1k322230
i_j __________ 3 3 5 3 0 3 5057 kd3,320
i E _________ i } 1 1 2 0 3 1 20520 k3,30
_H_ 0 0 1 1 2 21420 3 f
- 0 3 1 2 ¢ 53146 e, ked3,10
m 31 2 0 31431 3 20520 d, d+1
m {1 2 0 3 1 0520 kd3,30
nn 3 1 o° 4146 11 3 2,k 3,
c-ﬁ --------- 1—1 1 9 2 3 3 507 kf3221_0, k+1
c—ngﬂ 2 21620 0 1 1 2 f

Table 5. The Genus of Various Cram Positions.
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O i O i O

{The valucs of these ladders alternate and are unaffected by the addition of up to two tufis.)

th B B chb B o

Figure 10. A Few More Cram Values.

Welter's Game

This is the coin-on-strip game in which at most one coin may be on a square, and any leftwards
move of a coin onto an empty square is permitted, even if it passes over other coins. Victor
Meally has observed that if overtaking is forbidden, then we have the Silver Dollar Game.
Although the simplest cases were investigated by Roland Sprague, C.P. Welter discovered
many remarkable properties of the general case. A simplified version of the theory is given in
ONAG. Here we’ll just tell you the answers and describe some new discoveries.
We'll write
[alble] .. ]k ("a welt b welt ¢ welt..."”)

for the nim-value of the Welter’'s Game position with coins on the k different squares
a,b,e,...,

and will often omit k& when the number of terms is clear. The easiest way to compute this
Welter function is the Mating Method.

Mate those two of the & numbers that are congruent modulo the highest power of 2.
Then select a pair of mates from the remaining k — 2 numbers by the same rule, and so on.
Eventually we have mated all except possibly one of the numbers (the spinster, s), say as

(a,b),(c,d),...,and possibly s.

Then . . .
[alble]. . ]k = [alb] + [e|d] + ... (+ s if k is odd).

The two-term Welter function can be evaluated using the formula
[zly] = (z +y) — 1.
For example,

5t

[2/3[5/7|11[13]17]19]s
= [3/19] 1 [5/13] X [7)11] 3 [2)17

1557511 f18 =17
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there being no spinster in this case, while in
[0]1]4]9] 16/2536]
= [4]36] T [oj16] T [9]25] T1
=31F15F15%1=30

we see that 1 is the spinster. In this example there were two equally well mated pairs, (0,16),
(9,25). In such cases it doesn’t matter which pair we mate first.

Four-Coin Welter is Just Nim

When you play a few games you'll soon notice, like many other people, that a Nim-like strategy
suffices for Welter’'s Game with four coins, so that

lalbleld] = 0 just ifa T b+eTd=0.

Welter’s theory explains this by noting that if a,b and ¢, d are the mates, these equalities
reduce to . .
[alb] = [¢|d] and a + b= c+ d

which are equivalent since [z|y] = (z ¥ y) — 1.

And So’s Three-Coin Welter!

If one of your four coins is on 0, you're really just playing three-coin Welter with the others,
but shifted one place. In symbols

[Olalblc] = [a — 1|b — 1| — 1]
or
[a|ble] = [0]a + 1]b + 1|e + 1].

Thus the Welter position with coins on 2, 5, 7 is equivalent to the Welter or Nim position with
coins on 0, 3,6, 8, which is cured by moving 8 to 5, so in the three-coin position we should
move 7 to 4.

The Congruence Modulo 16

Although the Mating Method makes it very easy to work out nim-values, it’s not so easy to
find which move you should make to restore the nim-value to (0. But if the number of coins is
a multiple of 4, there is a remarkable connexion with Nim:

[a|ble|. . .]eak = 0, mod 16
exactly when
I )
a+b+c+ ...=0, mod 16.
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This ensures in particular that when the 4k coins are among the first 16 places the Welter's
game P-positions are exactly the P-positions in Nim that have distinct numbers. What are
the good moves from

(0,1,2,3,5,7,11,13)7
The numbers 0 1 2 3 5 7 11 13 nim-add to 4,
and we get 4 5 6 7 1 3 15 9 by nim-adding 4 to them.
But the marks x x x x x x x 4/ show that only the last of these is legal
(the rest involve increases or moves to occupied squares) so the only good move is from 13 to 9.
Now let’s look at

2 3 5 7 11 13 17 19, nim-sum 7,
giving 5 4 2 0 12 10 22 20, onnim-adding 7,
which reduceto 5 4 2 0 12 10 6 4, modulo 16.
XXX X

So the only hopeful moves are
7 to 0,13 to 10,17 to 6 and 19 to 4.
But of the Welter functions
[2[3]5/0/11[1317]19],  [2/3|5|7|11]10]17|19], [2[3|5|7|11|13]6|19], [2|3]5|7]11]13[17]4]
only the third can be zero (glance at the mate of 17 to see that the binary expansion of the
others must have a 16-digit). So the unique good move is from 17 to 6.
What happens when the number of coins isn’t a multiple of 47 If there are 6 coins, say, on

positions
1,2,3,5,8,13

you can pretend that there are really 8 coins on places
-2-1,1,2,3,5,8,13

on a strip you've perversely numbered starting from —2. Renumbering from 0 we see the
position

0 1 3 4 5 7 10 15 nim-sum 1
yielding 1 0 2 5 4 6 11 14
H * H * H

so this time there are three good moves, from

3to2, Tto6, 15to 14, in the new notation,

or 1to0, 5to4, 13to12, in the old.
If there are 5 coins, say on
2 3 5 7 11
we increase by 3: 0 1 2 5 6 & 10 14 nim-sum 12
yielding 9 100 4 6 2
X X XX
decreasing again: 1

showing that the only good move is from 5 to 1.
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Frieze Patterns

Patterns of numbers such as

(in which each diamond of numbers

b
a d satisfied ad = be + 1 so that d =
c

be +1

);

have many wonderful properties. For example, if you start with two horizontal rows of 1's
connected by any zigzag of intermediate 1's, say

1 1 1 1 1 1 1 1 1 1 1

1 ? ? ? ? ! 9 ? |
1 ? ? ? ] ? ? ? ]
1 ? ? ? 1 ? ? ? 1
1 7 ? ? | ? ? ? |
1 ? ? | ? 9 ? ? !

1 1 1 1 1 1 1 1 1
you'll find that all the entries are whole numbers and that each ! is 1 so that the pattern
repeats itself alternately one way up then the other. These self-checking properties mean that
your children can have fun while practising their arithmetic. If you want to check your own
arithmetic on the above example, see the Extras.
G. C. Shephard has observed that we can replace multiplication by addition, making each

diamond
b

a d satisfy (a+d) =(b+c)+1lsothat d=b+c+1—a.
c

If we replace the starting 1’s by 0’s the resulting pattern

0 0 0 0 0 0 0 0 0 0 0 0 0

has similar properties, but this time it repeats itself the same way up.
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We thought it might be a good idea to take the basic operation as nim-addition rather than
ordinary multiplication or addition, and to our great surprise found that we had discovered a
new way of calculating the Welter function!

You start with a row of zeros above the Welter position you want to evaluate, and work
downwards making each diamond

b
a d satisfy (a-T-d) :(bic)—#l 80 thatc:((aid) —l)ib,
c

and, in the unlikely event that you make no mistakes, you'll find the Welter function at the
bottom of the triangle; e.g.

0 0 0 0 0 0 0 0 0
2 3 5 T 11 13 17 19
0 9 1 11 H 27 1
7 6 14 6 16 8
5 6 12 16 12
4 T 29 11
4 21 5
23 18
17

yields the same answer as before, so we probably haven’t made any mistakes! This rule is
equivalent to the identity

[alb] .. [yl2lesr = [lalb]. .- [yle] T8I [y)e—1

which you can find in ONAG (p. 159).
Although by hand this calculation seems much longer, it’s quite a good technique to use if
you want to teach your computer to play Welter's Game.

Inverting the Welter Function

Suppose that you've evaluated
pp N

[alble|...] =n

and have in mind a number n’ # n. Then there are unique numbers

a #a, b#b, #ec,...

for which
[@|ble]...] = n',

alple]..] =

alble’]..] =
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Moreover it can be shown that the equation

[alble]...] =n
remains true if any even number of the letters a, b, ¢, ..., n are replaced by the corresponding
primed letters. We express this happy state of affairs by the single “equation”
a | b . n
a | b | o

Using this Even Alteration Theorem and the properties of frieze patterns your computer can
invert the Welter function.

For example, if you have five numbers with Welter function

[alblc|de] = n,
and want to find the numbers
a' v d e

for which

in which n and n' alternate along the bottom row, by working in the directions shown by the
arrows.
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Thus to find the good moves from
1 4 9 16 25

we must change one number to make the Welter function 0. The calculation

(in which the rightmost two diagonals are only for checking) shows that

1
36

and so the only good move is from 16 to 13.

2
331121328 | 0

4‘ gllﬁ

5} 29

The Abacus Positions

One day we idly wrote down the infinite frieze pattern

0] o0 2|01 1 al2l0] 1 6|4]2
1] 1 11370 1|3|5] 0 135
ul12|w0|8]6] 4| 2] 07 0
clor] 3| 5|79l 3] T o1

Since we can interchange any even number of the pairs

(a,a’), (b,b), (e, d),...,(n,n'),
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we can reorder these equations to say

O] (o1 | _fojrj2f _|o|1j2(3] [0|1]2|3|4] _ _ 0
L] [ 312 [543  |7(6/5f4]  |9|8|7l6]5]| 1
For some reason the particular equation
01234 0
918|765 ] 1
made us think of our abacus (Fig. 11) so we call the positions evaluated in the equation
0 1 2 o | B3 k-2 ]k-1 0
2k -1 |2k—-2|2k—=3 | ... | k+2|k+1 k k_ 1

the k-coin Abacus Positions. Thus the equation
91)2|6]5], =1

shows a 5-coin Abacus Position with its Welter function (or nim-value) 1.

:

Figure 11. Swanpan.

The Abacus Strategy

We can give an explicit strategy for the Abacus Positions. Let the putative equation
[alble|...]p =0

represent one of the Abacus Positions which we believe has Welter function 0. Define
ad=2k—-1—-a, b =2k-1-b, =2k-1-c,

and note that we have an even number of

!

a>a, b>b, c>c, ...

513

Now suppose your opponent makes the move which replaces a by z. Then since every number

< 2k — 1 appears in the list
a,a’ b b,ed,. ..,
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x must be one of

a b, e, ...,

say b or a’. If = b’ we must have
a>Db, andsob>a
and we can respond with the move from b to a’ since
Fla'le...]r =0

represents a simpler Abacus Position. If # = a’, then we have a > o’ and therefore an odd
number of
/

b>b, e=¢, ...

so that we can respond with one of the moves
btob', ctod,....

A similar strategy shows that if
[alble] .. Jr =1

represents one of the Abacus Positions asserted to have Welter function 1, then for every move
our opponent makes except the very last move of the game, we can reply with a move to
another such position.

The Misere Form of Welter’s Game

The remarks we've just made show not only that the Abacus Positions really do have the
asserted nim-values 0 and 1, but actually that they are equivalent to nim-heaps of sizes () and
1 even in the misére form of Welter’'s Game, for it is easy to see that there is a move from
any non-terminal Abacus Position to an Abacus Position of the other value. In the language
of Chapter 13,

every Abacus Position is fickle,

because nim-heaps of sizes () and 1 swap outcomes when we change from normal to misére
play. On the other hand,

every non-Abacus Position is firm,

a result which establishes that

Welter’'s Game is really tame!
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It suffices to show that if we can move from some non-Abacus Position

(z,b,c,...)...

to some Abacus Position
(a,b,c,...)

then we could also have moved to an Abacus Position of the opposite value. But in our previous

notation, if z > &’ we can move to
!
(' b,c,...).

Otherwise we must have z < a', since
(a',b,e,...)
is an Abacus Position. Since all numbers < 2k — 1 appear among
a,a’,b,b c,c,...
we can suppose that z = V', say, whence
b <a’ andsoa <b

so that we could have moved to
(b, a,c,...).

If you intend to lose Welter's Game, play as if you
meant to win, until this would make you move into
an Abacus Position, and then move instead to an
Abacus Position of the opposite kind.

T. H. O'Beirne considered the misere form of Welter's Game. However our complete analysis,
which independently reaches the same conclusions as that of Yamasaki, shows that his simple
rule only works for very small numbers.

Kotzig's Nim

Figure 12. Kotzig’s Nim on a 7-Place Strip with Move Set {1,2}.
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You play this by placing coins on a circular strip. Start by placing a coin on any square—
after that each player in turn puts a coin just m places further round the strip in a clockwise
direction from the last coin placed. You must choose m from a previously decided move set.
You lose if all the places where you might put coins are already occupied—you’re only allowed
to put one coin in any one place. Figure 12 is the directed graph (that’s the way Anton Kotzig
originally described his game) showing the successive places which may be occupied when the
move set is {1,2} and you play on a 7-place strip. What happens? By symmetry we can
assume that the first player plays on 0, and then he can win as follows:

2nd 1st 2nd 1st  2nd  1st

17 3! ~ 6!
2?7 4l 57 6 1 3.
67 1 3 H.

The sign ~ means “any legal move”. Where there’s a choice of moves, we've put ! or 7 to
indicate winning or losing; other moves are forced.

If the move set contains only one move, m, the game is just She-Loves-Me, She-Loves-Me-
Not. For if there are n places on the strip, there will be just n/d moves made, where d is the
g.c.d. of m and n. If n/d is even, the second player wins; if odd, the first.

If the move set is {1, 2}, all values of n are P-positions, except for n = 1,3 and 7. We've
already seen that n = 7 is an A -position, and it’s easy to check that n = 1 and 3 are, too.
Here’s a strategy for the second player in all other cases:

1st 2nd 1st 2nd 1st 2nd 2nd 1st 2nd 1st 2nd
n=23k+2(k>=0) 07 11 ~ 4 ~ 7T ~ ...~ (3k+1)
n=3k(k = 2) 07 2 37 4 ~ T ~. .~ Bk-2)3k-11
47 51~ 8! ~ ...~ (3k-1)1 3
n=3k+1(k=1,k>3) 07 20 37 5| ~ 8 ~. .~ (3k-1) 3k 1
47 6! 17 8! ~...~ (3k—-1)! 3k 1 3 5
87 91 ~ ...~ (3k) 1 3 5 7

(in the last case, if k= 1, the move 4 is illegal, so play goes 07 2! 3 1).

We've got quite used to games which behave regularly after a while, with a few exceptions
near the beginning. If the move set is {1, 3} the game is exactly periodic with period 6. The
N-positions are just those with n # 1 or 3, mod 6. Here’s Richard Nowakowski’s explanation.

If n is even the first player always plays on even places, so the second player wins, since
the move m = 1 is always available to him.

If n is odd, then on the first tour of the strip, if a player A responds to a coin placed on
p, say, with a coin on p + 1, then the other player wins by putting a coin on p + 2 (so long as
p+2 < n)and A will find himself blocked the next time round. So each player uses the move
n = 3 as long as he can.

So if n = 3, mod 6, the first player will arrive on n — 3, forcing the second player to n — 2,
leaving n — 1 to the first player, who wins next time round.
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If n =1, mod 6, the first player arrives on n — 1. The second time round both players are
forced to play on places p = 2, mod 3, and the last time round on places p = 1, mod 3. Since
n is odd, the first player wins.

If n = 5, mod 6, the second player wins since first time round he arrives at n — 2. The first
player now plays on n — 1 or on 1, and the corresponding winning replies are 2 and 4.

For the move set {2, 3} we leave the reader to verify that

n= 0,1 and 4, mod 5 are P-positions, except for n = 1,5 and 11, and
n = 2 and 3, mod 5 are N'-positions, ezcept for n = 2.

Omar will also confirm that if the move set is {1, 2,3}, then

the P-positions are n = 0,1, 2, mod 4, except for n = 1 and 5, and
the N -positions are n = 3, mod 4, except for n = 7,

and will go on to examine more complicated move sets.

The extension of Kotzig's Nim (or Modular Nim) to more general graphs has been named
Geography by Fraenkel. Nowakowski & Poole and Hogan & Horrocks have looked at the
game which is the product of two cycles. For 3 x n the outcomes are periodic with period 42,
and for 4 x n the position is P just if n = 11 mod 12.

Fibonacci Nim

Suppose you play with just one heap of chips, and let the first player take away any number
he likes, but not the whole heap. After that each player may take at most twice as many as
the previous player took. Who wins?

The P-positions turn out to be heaps with a Fibonacei number

U = U = 1._. Uz = 2_, Uy = 3._. Us = 5._. 8_, 13 21 24, 55. 89

of chips. Zeckendorf has a remarkable theorem which says that any whole number has a unigue
expression as the sum of non-neighboring Fibonacei numbers, for instance

54 =344 13+ 5+ 2.

If the heap has a non-Fibonacci number of chips, the next player can win by taking any number
of small terms from such an expansion, provided their total is less than half the next largest
term. E.g. from a heap of 54 take 2, but not 2 4+ 5 = 7 in case your opponent then takes 13.

More Generally Bounded Nim

Suppose the rules are changed very slightly to read

“may take less than twice as many as”

instead of “may take at most twice as many as;”

does it make much difference? Curiously enough we get the same result as if we had changed

the rules to read “may take no more than.”
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If the number of chips is a power of 2 it’s a P-position in either case; otherwise the next
player can win by taking the highest power of 2 which divides the number of chips.

Of course, if the rules say
“may take less than”,

then, provided there’s more than one chip, you win immediately by taking one, since your
opponent then has no legal move. It's a disguise for She-Loves-Me-Constantly.
There are two whole series of such games, in which the rules read

“may take less than k£ times as many as”

or ¢ . -
‘may take at most k times as many as.

For the “less than” games the sequence of P-positions {a,} satisfies the recurrence relation
An+1 = Gp + ap—y for n = ng,
and for the “at most” games the relation is
Up+1 = Ap + Gp—m fOr 1 = 14y,

where [, m,n; and n,, are given in the table:

k=1 2 3 4 5 6 7
Il=—- 0 2 5 T 10 13
m=0 1 3 5 7T 10 13
m=- 2 5 13 14 23 28

oL

My, = 2 6 9 11 19 24

To be consistent with the usual labelling of the Fibonacci numbers we start each sequence
with as = 1. The “less than” sequences continue with

a;i=i—1(2<i<k+1), a; =2 —k—2(k+1<i<(3k+2)/2),...
and the “at most” ones with
ai=i—12<i<k+2), a;=2i-k—-3 (k+2<i<3k+5)/2), ...

but as k increases, it takes longer and longer before the sequences settle down. Omar, having
stayed with us so far, will doubtless find the exact way in which these sequences and the above
table continue.

Epstein’s Put-orTake-a-Square Game

This is also played with just one heap of chips. At each turn there are just two options: to
add or take away the largest perfect square number of chips that there is in the heap. For
example, if the number in the heap is a perfect square other than 0, the next player can win
by taking the whole heap.
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This is a loopy game! If we start from a heap of 2, the legal moves are to add or subtract 1.
The first player won't take 1, leaving a perfect square, so he adds 1 to make 3. For the same
reason his opponent doen’t add 1, so he takes 1 and the game is drawn.

But 5 is a P-position since 5+ 4 are both squares! And 4 x5 = 20,9 x5 =45, 16 x5 = 80
are also P-positions; why not 1257 A slightly more interesting P-position is 29. The next
player won’t subtract 25, but when he adds it to make 54, his opponent can go to 5 and win.

2

Y
10 <

Figure 13. Partial Analysis of a Heap of 10.

Figure 13 shows part of the analysis of games starting from 10. If vou continue the fisure
=] o o o
you'll soon realize why we don’t give a complete analysis of Epstein’s game. Squares and other
N -positions are in square boxes, P-positions are circled.
Here is a list which includes all P-positions of remoteness < 14 below 5000, and a few of
the more interesting A/-positions, our original list having been augmented by Thea van Roode.
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P-positions N-positions

Remoteness 0 @ 0
Remoteness 1 :  all squares

Remoteness 2 ¢ 5, 20, 45, 80, 145, 580, 949, 1305,
1649, 2320, 3625, 4901, 5220, ...

Remoteness 3 @ 11,14, 21, 30, 41,

Remoteness 4 . 29, 101, 116, 135, 165, 236, 404, | 44, 54, 69, 86, 105, 120, 126,
445, 540, 565, 585, 845, 885, 909, 944, 954, 975, | 141, 149, 164, 174, 189, 201, 216,
1125, 1310, 1350, 1380, 1445, 1616, 1654, 1669, 230, 261, 291, 294, 329, 366, ...
2325, 2340, 2405, 2541, 2586, 2705, 3079, 3150,
3185, 3365, 3380, 3405, 3601, 3630, 3705, 4239,
4921, 4981, 5225, 5265, ...

Remoteness 5 © 52, 71, 84, 208,

Remoteness 6 @ 257, 397, 629, 836, 1177, 1440, 25h4, 284, 296, 444, . ..
1818, 1833, 1901, 1937, 1988, 2210, 2263, 2280,
25601, 2516, 2612, 2845, 2861, 3039, 3188, 3389,
3621, 3654, 3860, 4053, 4105, 4541, 4693, 4708,
4813, 4930, ...

Remoteness T : 136, 436, 601, 918,

Remoteness 8 : 477, 666, 5036,. .. 1291, ...

Remoteness 9 252, 342, ..

Remoteness 10 @ 173,...

Remoteness 11 @ 92,...

Remoteness 12 : 3341, 3573, 3898, 4177, 4229,
4581,. ..

Remoteness 13 : 1809, 1962,. ..

Remoteness 14 : 1918, ..

If you want to know how to win from a heap of 92, look in the Extras.
The misére form of the game is uninteresting, bhecause the increasing move is always

available.

Tribulations and Fibulations

What happens if we use another system of numbers instead of squares? An easy case is 2% — 1,
but more interesting ones have been suggested to us, namely the triangular numbers 1, 3, 6,

10, 15, 21, ... (Simon Norton) and the Fibonacei numbers plus one, 1, 2, 3, 4, 6, 9, 14, 22, 35,
... (Mike Guy). See the Extras.

Third One Lucky

Ordinary Nim ends when a player takes the last stick. Misére Nim may be thought of as
over when only one stick remains. What happens if we say the game’s over when exactly two
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sticks remain, the winner being the player who takes the third last stick? Even the three-heap
version of this game is quite hard.

If there are m sticks in the first heap, and n in the second, there is a unique size for the
third heap to make a P-position. For fixed m, this size is eventually arithmetico-periodic in
n. The periods for

m=1234 5 6 78910111213 1415 16 17 18 19 ...
are 1242121212 88 10 60 60 84 84 84 16 18 180 20 ...

Hickory, Dickory, Dock

Dean Hickerson suggested this game in which a move replaces a heap of n by three heaps of
sizes

k, n—Fk, n—2k where 1 <k < %n.

It looks rather like Turnips in the previous chapter, but in fact the nim-values forn = 1,2,3, . ..
are the exponents, 0,1,0,2,0,1,0,3,0, ... of the nim-values (Fig. 7 of Chapter 14) for the Ruler
Game.

D.U.D.E.N.EY

D.UD.EN.EY is a game,
Deductions Unfailing, Disallowing Echoes, Not Exceeding Y;

a particular case of which was described by Dudeney as “The 37 Puzzle Game”.
From a single heap either player may subtract a number from 1 to Y:

“Not Exceeding Y
except that the immediately previous deduction may not be repeated:
“Disallowing Echoes”
and you win if you can always move:
“Deductions Unfailing”,

but at some stage your opponent cannot.

If echoes were not disallowed, the P-positions would be the multiples of Y41 and the
winner would always follow a deduction of X by one of Y4+1-X. This strategy still works
for D.U.D.E.N.E.Y when Y is even because it is impossible for Y+1—X to equal X. So we'll
suppose from now on that Y is odd.

Here are the good moves from N when Y= 3:

fromN= 0 1 2 3 4 5 6 7 08 9 10 11
deduct ? 1 12 3 ? 1 123 3 7?7 1 123 3
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and here they are for Y = 5:

fromN= 0 1 2 3 4 5 6 7 8 9 10 11 12
deduct ? 1 1,2 3 4 5 3 7 14 23 35 4 5
from N= 13 14 15 16 17 18 19 20 21 22 23 24 25
deduct ? 1 124 3 45 5 3 7 1 1,23 35 4 5

For Y= 3 there is an ultimate period of 4; for Y= 5 a period of 13. The easiest way to win is
to move to one of those pearls among numbers, which have a 7 entry, indicating that the next
player has no good move at all. Pearls are P-positions no matter what the previous move, but
there are other P-positions in which the only winning move is disallowed by the echo rule.

In general the pearls are spaced at intervals of either

E = Y + 1, the next even number after Y, or
D = Y + 2, the next odd one.

For, if P is a pearl then after most moves from P + E or P + D we can go immediately to P.
The only exceptions are the moves from

P+EtoP+%E andP + D toP 4+ E.

If the first of these is a bad move, P + E is a pearl, and if it’s a good one, P + D is a pearl.

From a given position there's usually only one move which will prevent your opponent
from reducing to an earlier pearl, though sometimes there can be two. So it's fairly easy to
determine the status of the critical move

1
P+Et0P+§E

by searching back along one or two alleys. In the case Y= 5, the critical moves from
13 to 10 and 26 to 23
are bad, because they can be answered by
10 to 5 and 23 to 18
but those from
6 to 3 and 19 to 16
are good, and are indicated by bold 3’s.

Strings of Pearls

Knowing the pearls helps you to win the game: move directly to a pearl if you can, and
otherwise prevent your opponent from doing so. So all we need tell you is the sequence of D's
and E’s separating the pearls. These are (ultimately—see entries 55 and 95) periodic. In Table
6 the periods are in parentheses, and » > 0. Much of the work was done by John Selfridge
and Roger Eggleton.

In his chapter on subtraction games, Schuh discusses this game, together with its misere
form, and the two variants in which the outcome is changed if play terminates at 1.
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Y Pearl-string Y Pearl-string
3or8r+3 (E)EEE ... 41 (DDDEDE) ...
Sor 8r+5 (DE)DEDE ... 55 DD(EDE)EDE ...
7 (DEE)DEE . .. 63 or 128r + 63 (E)EE
9 DDE)DDE e 65 or 128r + 65 (DDDE)DDDE ...
150r 32r +15  (E)EE 71 or 64r + 71 (DE)DEDE ...
17 or 32r + 17 (DDE)DDE 73 or 128r 4 73 (DDEDE)DDEDE ...
23 (DDEDDDDEE) 87 or 128r + 87 (DDE)DDE ...
25 or 32r +25 (DE)DE .. 95 DDEE(DDE)DDE ...
31 or 128r + 31 (DEE)DEE 97 (DDEDDDE) ...
33 (DDDEDDE) 103 (DE)DEDE ...
39 or 128r + 39 (DEE)DEE ... 105 or 128r + 105 (DE)DEDE ...

Table 6. Strings of Pearls for D.UD.E.N.E.Y for 2 of the odd Values of Y.

Schuhstrings

Prof. Schuh also discusses the variation in which 0 is a permissible deduction, but the person
who first gets to 0 wins.

Starting from any positive number n you’ll always have at least one good move, because if
no positive deduction wins for you, you can deduct 0 and present your opponent with a similar
situation, except that 0 is now illegal. How can a positive deduction

nton—g
possibly be a good move? The only move it prohibits from n — g is
n—gton—2g
and so this must be the unique good move from n — g. But then similarly
n—2g ton — 3g,
n — 3g to n — 4g,

must be good moves, the last of which must be from
g to 0.

A positive deduction g can therefore only be good at a string,

of multiples of g. It will be good from (k + 1)g if and only if it was the unique good move from
kg. The first multiple of ¢ from which there’s another good move will terminate the g-string.
Thus, when the permissible deductions are 0, 1, 2, 3, 4, 5, we find that the good moves are:

fromn= 1 2 3 56 78 9 10 11 12 13 14 15 16 17 18 19 20
deduct 11,2 3 530435 0 349 0 0 5 0 0 0 0 5

The 1- and 2-strings terminate at 2 and the 3- and 4-strings at 12, but the 5-string continues
indefinitely.

4
4
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In general, if there are two or more numbers
a,b, ...

whose strings have not yet terminated, then the first number to occur in two or more strings
will terminate those strings. At most one string continues forever. In Table 7 an entry (a,b)
means that the a- and b-strings terminate at their l.c.m., while an entry goo corresponds to
an infinite g-string, and is only relevant when the largest deduction is odd. It is not known
whether there is any Schuhstring game in which three or more strings terminate simultaneously.

2or3 dor5 . 6or7 8or9 10or1l 12 0r13 14 or 15
| a (1.2) (12) 12) 12) 1.2)
3o (34) {3,6) (3,6) | (3,8 (3.6) {3,6)
500 (4,5) (4,8) (4,8) (4,8) (4,8)
T N R (5.7 (5,10) (5.10) (5,10)
(3,6) 0 | e (1.9) (9.12) (7,14)
(4,8) 6 | 12 Hoc (7.11) (9,12)
(5,10) (4,8) (3,6) (1,2) 13 (11,13)
{7,14) (5,10) (4,8) (3,6) (1,2) 15%
(9,18) (7.14) (5,10) (4,8) (3,6) (1,2)
(11,22) {9,18) (714) | (5.10) (4.8) (3.6)
(12,24) (11,22) (9,18) (7.14) (5,109 (4.8)
(13,26) (12,24) (11,22) (9,18) (7,14) (5,10)
(15,20) (15,20} (12,16) (12,16) ©9,18) {7,14)
(21,27) (16,17) {13,16) (15,20) (15,20) (12,16) (9,12)
(16,17) {19,21) {17,19) {13,17) {11,13) (11,13) (11,13)
(19,23) (23,25) (21,23) {19,21) {17,29) (1517) (15,16)
25:xc 250 23 21w 19:0 1790
27 26 | 25or24 | 23or22 | 2lor20 | fSerl8 | 17orlé

Table 7. Schuhstrings Corresponding to Various Maximum Deductions.

The Princess and the Roses

When we originally planned Winning Ways, the Princess was to have had a chapter all to
herself, but as with other beautiful and intriguing women, we probably dallied too long in her
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company and it now seems more discreet to limit our memoirs to a brief résumé of our ren-
contres. Perhaps our narrative will steer a course between the original bare account of Prof.
Schuh and the later flights of fancy of Monsieur Filet de Carteblanche.

A
A,

B
=
g

Figure 14. Princess Romantica Smells Charming Charles’s Rose.

The Princess Romantica is known to have had two princely suitors, Handsome Hans and
Charming Charles. Each suitor went in turn to the rose-garden and would bring back a rose, or
two roses from different bushes. In Fig. 14 you can see the Princess smelling the beautiful rose
that Charming Charles has just brought from the largest bush. Eventually one suitor, finding
himself unable to bring her a rose because none was left in the garden, crept despondently
away, and left the other to claim her hand as in Fig. 15. Which was the lucky Prince?

s

Figure 15. Who Won the Hand of the Princess?




526 Chapter 15. Chips and Strips &

Of course, you can play the game as a heap game in which the legal move is to take any
ohe chip, or any two, one from each of two distinet heaps. Prof. Schuh showed that a worldly
prince in a 5-bush garden should always arrange that when the numbers are put in descending
order, they form one of the patterns

even-even-even-even-even,
even-odd-odd-odd-odd,
odd-even-even-odd-odd,
odd-odd-odd-even-even.

Obviously Charles knew what he was doing and Prof. Schuh’s researches leave little doubt
that he must be the man depicted in Fig. 15.

You can see from Prof. Schuh’s rule that when there’s only a small number of bushes (which
may contain a large number of roses).

parity considerations are paramount.

However, when there are many few-rose bushes then

it is triality that triumphs

because the P-positions ultimately are just those in which the total number of roses is a
multiple of three.

This reveals itself by the final subscript 3's in Tables 8, 9 and 10 which respectively list all
P-positions of the forms

3w2v]= or a.2¥1*® or a.b.1%
ie.
x 3-rose bushes 1 a-rose bushes 1 a-rose bush
y 2-rose bushes or y 2-rose bushes or 1 b-rose bush
z l-rose bushes 2 l-rose bushes z l-rose bushes

In these tables an entry ng represents all numbers of the infinite arithmetic progression

nn+3dn4+6,n+9 ...

while myn represents the finite progression

m,m+dm+2d,....n,
and so on; for example, the entry 475175 represents 1, 7, 12, 17, 20, 23, 26, 29,. ..
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R ‘o 1 2 3 4 5 6 7 8 9 0 1

0 0, 2, 4y .65 .8, Ll0, 12, :1-&3 L6, 18, 20, 22,
1 oty 3, 45, IT 6y 48, (6,10, 4,12, 6,14, 4,16, 6,18, 4,20,
2| .5, 4, ‘ 0, 2, _44§ 465 By L1012, 14, 16, LIS,
3 0, 2, 4, 3, 5 ‘___;;__ 65 4,8, 6,10, 4,12, 6,14, 4,16,
4 | L4, 3, .5, 4, 0, 2, WAy 46, W8y L0, 12, 14,
5.5, 4, 0, 2, 3, S| 4, s 4.8, 6,10, 4,12,
6 0, 2, .4 3, L5, 4, ‘ 0, 2, 4, L6, 8, 10,
7| 4 3, .5, 4, 0, 2, A3, 5.l 4 65 4,8,

Table 9. P-positions of Type a.2¥1%. Entries Are Sets of Values of z.
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@ 0 i 2 3 4 5 6 T 8 9 10 11

b

0 0, 2, b b a8y W0, 12, L4 L6 8, 20, 22
! , 1, 1, R Tt N T
2 PR T 4, 6, 48, 6,00, 4,12, 6,14, 4,16, 6,18, 4,20,
3 4By PRE 3 503 B3 673 e95] 6Tally 694135 (TulSy 9ul7s (7419
4 B 6,1 8, 10, 9 blly| S0, 12, ]410,14, (12,16, 10,18,
5 A0 0 | a8 | | Sl 3, 7402, Ouda| 13, I5,],13,07,
6 20 L | 6400, | 9 | WBlly 13, (15, 14, (6,16, (10,15, J217,| 16,
7 4, L3, | 402, I | o10s] 7412, o4, (6, 3,18, 7,07, 9,19, (1318,
8 A6, 15, | 6ld, 0,03, | 12, 904y 6406, 348, 20, 19, 621, 410,20,
9 A8, T, | 406, G705, 10,043 o13,],0005, (717, (19, 21, 23, 70
100 | 20, 19 | 6,18, 9.07y o12164| oI5, 612175 919, (6215 23, 25, 24
11 220 2L, | 420, 009, (008, (13,17,] 16| 13,18, 1020, (722, 24, 26,

Table 10. P-positions of Type a.b.1*. Entries Are Sets of Values of z.

The tables also illustrate that there are places between the parity and triality regions in
which the outcome depends on considerations mod 4 and 5, so that

quaternity’s a quality,

quinticity can be quintessential ,

and there are even hints that

sex may be significant;

but we have explored other regions in which it sadly seems that

randomness re igllS.

In his first paper on this subject M. de Carteblanche asks for a code of behavior for princes
in a 6-bush garden wherein there’s a bush with only 1 rose. You'll find one in the Extras. In
a second paper he further describes how the princes, after their weddings to Romantica and
her even more beautiful younger sister Belladonna, transformed the rose game into a different
one with chocolates and discovered some more interesting games to play.
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One-Step, Two-Step

This is the strip game in which arbitrarily many coins are allowed on a square, and the legal
move is to make either one step or two steps, a step being to move a single coin just one space
leftwards. The coins moved in the two steps of a 2-step move may be the same or different.
Letting a,, be the number of coins on square n, we can ask when
gy . . .

represents a P-position. The answer certainly won't depend on ag since coins on square 0 will
never be moved again.

There’s a surprising connexion between this game and our previous one. In fact the position
described above behaves exactly like

a1 tas+az+ ...+ an, as +az + ...+ ap, a3+ ...+ Qpy .. 0p_1 + Qp, n

in the Princess-and-Roses game! We leave it to Omar to work out why.
So when your coins are all in the first 6 places, you can translate Prof. Schuh’s rules to
give the P-positions, which are

Teeece, 7Tdeeed, 7Tdeded, Teedee,

where e means even, d means odd and 7 means anything.

More on Subtraction Games

Since G(n) for a heap of n beans in the subtraction game (see Chapter 4, Vol 1.)

S(S_]_,Sz,. vay S,r_-)

depends only on k earlier values, namely

g(n - Sl)! g(n - 82)5 N ,g(ﬂ- - Sk)e

we see that G(n) < k. Moreover this sequence of £ values must eventually repeat so the nim-
sequences of all subtraction games are (ultimately) periodic. But the bound on the length of
the period given by this argument seems astronomical when compared with the facts. Can
you find something nearer the truth?

We have seen that if the g.c.d. (s1,82,...,5;) is d > 1, then the game is just the d-plicate
of a simpler game. Thus S(s;) is the s;-plicate of S(1), She-Loves-Me, She-Loves-Me-Not, and
so has period 2s; and nim-sequence 0.00...0111...1.

We can also analyze S(s1,s2) and S(s1, 89, 81 + s2) completely. Write

s1=a, s =b=2haxtr for0<r<a

and suitable h. After the g.c.d. remark we needn’t consider » = 0 or a unless a = 1.
S(1,2h) has period 2h 4 1 and nim-sequence 0.10101...012, and S(1,2h + 1) = S(1). (In
fact s = 1 and all s; odd gives She-Loves-Me, She-Loves-Me-Not.)
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For a > 1 the period of S(a,b) contains a + b digits, alternating blocks of a 0’s and a 1,
except that the last @ — r 0’s are replaced by 2’s, where r is as above. For example: a = 3,
r = 1; the nim-sequences for S(3,11) and S(3, 13) are

0.0011100011122 and 0.001110001110221.

Here is a general method for analyzing S(si, s2...,sg). Write the numbers in £+ 1 columns.
The first row is
0._. 81,82, .. k-

Each later row is of the form
LI+ sy, L4 sq, ... L+ sy,

where [ is the least whole number which hasn’t appeared in earlier rows. The table will
eventually become periodic in that a block of ¢ consecutive rows can be obtained from the
preceding block of ¢ by adding p to all the entries, for a suitable ¢ and p.

The first column contains all numbers n for which G(n) = 0, and the second, by Fergu-
son’s pairing property, just those for which G(n) = 1. Later columns contain numbers for
which G(n) > 2, apart from repetitions of entries in the second column. We illustrate with
S(1,b,b + 1). If bis even (Fig. 16(a)) there are no such repetitions, the period is 2b and the
nim-sequence is

0.101...012323...23.

%ny= 0 L 2 3 Fmy= 0 L 3 2 exceptthat
n= 0 11011 n= 01 910 %9=1
2 31213 2 31112
4 514 15 4 51314
6 716 17 6 715 16
8 918 19 8 917 18
20 21 30 31 19 20 28 29  #28) =1
22 23 32 33 2122303
24 25 M 35 23 24 32 33
26 27 36 37 25 26 34 35
28 29 38 3% 27 28 36 37
40 41 50 51 38 39 47 48 {47 =1
42 ... 40 ...
(a) (b)

Figure 16. The Subtraction Games S(1,10,11) and S(1,9,10).

If b is odd (Fig. 16b) there is one repetition (9, 28, 47, ...) in each period, whose length
is 2b 4+ 1. The nim-sequence is as before, but with the final 3 omitted:

0.101...012323...2.
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More on Subtraction Games

{2h—2)a
2h—-2)a+1
2h—1ja—r—1
(2h—l)a—r

(2h—1u—1

(2h—Da

2ha—vr
Zha-r+1
2ha—r+2

(2h+la—r-1

(2h+2)a—r
2h+2)a—r+1

(2h+3a—r—1

(Zh+4)a—r
{(Zh+4a—r+1
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Figure 17. Analysis of S(a,b,a +b), b =2ha—r, 0 <r < a, (a,b) = L

To complete the analysis of S(a,b,a+b) note that the case a > 1, b = 2ha
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r,0<r<ais

fairly straightforward. It is illustrated by a period of ha rows in Fig. 17; there are r repetitions

(boxed in the figure) so the period is 4ha

and a 1's followed by h

r 3's.

r = 2b+r. The period comprises h blocks of a 0’s
1 blocks of a 2's and a 3's, then a 2’s and a

The case b = 2ha+ r, 0 < r < a, is more complicated. The period is a times as long,
(2b+ r)a. We illustrate it with the particular case a = 5, b =43, h = 4, r = 3 in Fig. 18. The
ar ( = 15) repetitions are shown boxed.

In either of the cases b = 2ha £ r, the ith value of n for which G(n) =0 is

. i
n; =1+ {—J a l
a

and ihe value for which G(n) =1 is a + n; by Ferguson'’s pairing property.

21
b+ -r’J b
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0 5 43 48 93 98 136 141 269 274 312 317
1 6 44 49 94 99 137 142 270 275 313 318
2 7[45]50 95 100[138]143 271 276[314]319
3 8|46|51 96 101 139 144 272 277|315/ 320
4 9l47|52 97 102 140 145 273 278 316 321

10 15 53 58 103 108 146 151 186 191 229 234 279 28B4 322 327 362 367 405 410
11 16 54 59 104 109 147 152 187 192 230 235 280 285 323 328 363 368 406 411
12 17 55 60 105 110 148 153 188 193 231 236 281 286 324 329 364 369 407 412
13 18 56 61 106 111 149 154 189 194 232 237 282 287 325 330 365 370 408 413
14 19 57 62 107 112 150 155 190 195 233 238 283 288 326 331 366 371 409 414

20 25 63 68 113 118 156 161 196 201 239 244 289 294 332 337 372 377 415 420
21 26 64 69 114 119 157 162 197 202 240 245 290 295 333 338 373 378 416 421
22 27 65 70 115 120 158 163 198 203 241 246 291 296 334 339 374 379 417 422
23 28 66 71 116 121 159 164 199 204 242 247 292 297 335 340 375 380 418 42
24 29 67 T2 117 122 160 165 200 205 243 248 293 298 336 341 376 381 419 42

30 35 73 78 123 128 166 171 206 211 249 234 299 304 342 347 382 387 425 43(
31 036 T4 79 12411294167 172 207 212 250 255 300 305 343 348 383 383 426 43
32 37 75 80 125 ;IMB 173 208 213 251 256  301[306344 349 384 389 427 43
33 38 76 81 126 131 169 174 209 214 252 257 302 307 345 350 385 390 428 43
34 39 77 82 127 132 170 175 210 215 253 258 303 308 346 351 386 391 429 43

40 (45 |83 88 1331?6 181 216)221| 259 264 309 314|352 357 392|397|435 44
41 |46 |84 389 217(222{ 260 265  310|315(353 358 393|398 |436 44
42 |47 |85 90 177 182 220 225  218|223|261 266 39413991437 44

. 178 183|221(226 219 224 262 267 354 359|397(402 395 400 438 44
86 91129134 179 184|222)227 355 360(|398|403 396 401 439 44
87 92(130|135 180 185{223]|228 263 268 311 356 361399404

Figure 18. Analysis of S(5,43,48).

Smallest Nim, Largest Nim

In Smallest Nim there are two colors of heap, black and grey. A legal move is to take
any number of beans from the smallest black heap, or from any grey heap. To calculate the
nim-value of a position where the smallest black heap contains n beans, and there are k such
n-bean heaps, then all black heaps may be thought of as a single grey heap of size n or n — 1,
according as k is odd or even if these are the only black heaps, but according as k is even or
odd if they are any larger black heaps.

In Largest Nim the two colors are grey and white and a legal move to take any number
of beans from any grey heap or from the largest white heap. If any two or more white heaps
have the same size, say n, then the value of the position is unchanged if all smaller white heaps
are discarded and n — 1 beans are removed from each of the remaining heaps of n or more
beans. Any even number of 1-heaps may be discarded, and the process repeated, so that an
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arbitrary position in Largest Nim is equivalent to one in which the white heaps have different
sizes. Omar will enjoy calculating the value of two such white heaps, and will conclude that
Largest Nim is rather more complicated than Smallest Nim.

Trevor Green, Claudio Baiocchi, and Philippe Fondanaiche found all P-positions for the
special cases in which all heaps are black or all heaps are white. Several papers are available on-
line at http://www.stetson.edu/efriedma/mathmagic/1100.html at the Math Magic Website,
November 2000 .

Moore’s Nim,

E. H. Moore suggested the heap game in which the legal move is to reduce the size of any
positive number, up to k, of heaps. Thus Nim; is ordinary Nim, and Nim, is the game in which
you can reduce just one or two heaps. The theory rather surprisingly involves calculations in
base two and in base k£ + 1. You

Fzpand the numbers in base 2, and
Add them in base k + 1, without carrying.

You should move to positions in which this “sum” is zero.
For example, if £ = 2, and you are confronted with

5= 101 5= 101
6 = 110 6= 110
9= 1001 3= 11
10 = 1010 7= 111

2222 000

you must reduce the 9 and 10 heaps, replacing them by 3 and 7.

Smith’s analysis of Subselective Compounds (Chapter 12) is similar. Nim-values for Moore’s
game have been found by Jenkyns and Mayberry. Yamasaki has shown that it is tame, and
that a position is fickle only if its nonzero heaps are all of size 1, and the number of them is 0
or 1 modulo & + 1.

The More the Merrier

Bob Li has suggested that ordinary Nim can be adapted for n players. They take turns in a
fixed cyclic order and there are different grades of winner.

First prize goes to the player who makes the last move,
Second prize to the immediately previous player, and so on, until the
Booby prize, which goes to the player who was first unable to move.

Sharing of prizes is not permitted: as soon as the game ends each player must take his
prize and set off for his home town without any under-the-table payoffs for help he might have
received from some of the other players.

Li was surprised to find that his game was very similar to Moore's. Take the position
you're faced with and add the binary expansions of your numbers in base n without carrying.
You're the Booby only when the sum is 0.
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Moore and More

If we allow each of the n players to reduce any number up to k of the heaps at his move, the
theory, also due to Li, is similar. The Booby this time is the player who sees 0 when he adds
the binary expansions of the numbers modulo k(n — 1) + 1, without carrying.

We have not discussed games for more than 2 players elsewhere in this hook because the
stipulations to prevent coalitions are somewhat artificial, and lead to paradoxes of the “surprise
exam” type. See the article by Paul Hudson in the References.

There are so many generalizations of Nim with interesting theories that we certainly haven't
said the last word on the subject, and so

This is the way the chapter ends,
This is the way the chapter ends,
This is the way the chapter ends,

Not with a Bang but a Whim

Perhaps you might like to play Nim, but on just one occasion one of the two players is allowed,
instead of his usnal Nim move, to exercise his Whim to decide whether the outcome will be
decided by normal or by misére play. If we use

0-nim to mean normal Nim
1-nim to mean miseére Nim, and
2-nim to mean Whim,
then we can continue the sequence with
3-nim = Trim,
4-nim = Quam, etc.

The move in d-nim (“Denim”), d > 2, is

either to move as in Nim
or to reduce d (but not both).

This is easy to analyze if you introduce a quiddity heap, to keep account of just which
game vou're playing. Then each of these games becomes like Nim with an extra heap. If
2k < d < 2F+1 the quiddity heap behaves like a heap of size d when all other heaps are of size
less than 25t1 but like a heap of size d — 1 when they're not.




Extras

Did You Win the Silver Dollar?

You did if you moved the coin behind the $ just 2 squares or 1, leaving (3,2,1) or (2, 3,1),
depending on which version you're playing. Notice that, in the latter case, there’s only one
coin between the $ and the bag.

How Was Your Arithmetic?

When you filled in the frieze pattern it should have looked like

1 1 1 1 1 1 1 1 1 1 1 1

In Put-or-Take-a-Square , 92 Is an N-Position

In Fig. 19 the P-positions are in the centre column, squares on the right and other N-positions
on the left.

Tribulations and Fibulations

Norton conjectures that in his game of Tribulations no position is drawn and A-positions
are more numerous than P-positions in golden ratio. Richard Parker has verified these asser-
tions for numbers < 5000 (for which the calculations sometimes run into the millions). The
remoteness ad suspense numbers (which are probably always finite) are shown in Table 11.
Play from 51, 2 and 56 is especially interesting; draw diagrams like Fig. 19.

For Mike Guy's game of Fibulations we have proved the corresponding assertions and
can in fact give a complete analysis. It is well known that any number can be economically ex-
pressed as the sum of Fibonacci numbers by the Zeckendorf algorithm : always subtract the
largest Fibonacei number you can. Less economically we can use the Secondoff algorithm:
always take off the second largest Fibonacei number you can, e.g.

100 = 89 + 8 + 3 (Zeckendorf) or 55 + 21 + 13 + 5 + 3 + 2 + 1 (Secondoff)
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Table 11. Remoteness and Suspense Numbers for Tribulations.
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A number is a P-position in Fibulations if and only if

either  its Secondoff expansionends 3 + 1 +1or 5 + 2 + 1
or it is 3 more than a Fibonacei number which is at least 8.

The numbers 0, 11, 5, 8, 13, 21, 34, 55, 89, 144,
have remotenesses 0, 8, 2, 2 2, 4, 6, 8, 10, 12,

The remoteness of any other P-position is found by adding twice the number of Secondoff
steps you take to get to one of these and the remoteness of an A-position is one more than
the smallest remoteness of its P-options. E.g. from 1000 we get to 34 (remoteness 6) after
4 subtractions (of 610, 233, 89 and 34) so 1000 has remoteness 6 + (4 x 2) = 14. On the
other hand, 1001 has remoteness 3 (move to 13). We believe, and Omar might confirm, that
the suspense numbers (which are all finite) and nim-values (which are all 0, 1, 2 or oog) have
similar patterns.

Our Code of Behavior for Princes

Our Code of Behavior for Princes in that 6-bush rose-garden with a l-rose bush is best de-
scribed by translating it into the One-Step, Two-Step game. It can be checked that all the
resulting positions except

Tededel 7edddel 7ddedel 7?ddddel
Tededdl 7Teddddl 7ddeddl 7dddddl
eeeel  70edeel  Tedledl ?ddOeel

can be moved to one of Schuh’s P-positions, and that these 12 classes of position, when joined
by possible moves, form the graph of Fig. 20. In the figure a boxed position is P, an unboxed
one is A/, and

means any even number, including 0,
means any odd number,

means any even number =2,

means any odd number > 3, and
means any number,

SR

and the dotted arrow indicates that moves can only be made in that direction. The positions of
form 700deel and 700ecel have been omitted from the figure because they cannot be reached
from the other ones. To complete the figure, adjoin

| 700deel | 700ecel |
except except
700dEE1  T00EEE1
7001021 7000£01
7001041 7002021,




538

Chapter 15. Chips and Strips &

ededdl ddeddl f

except except

DdOdi 1dod11
0d0d31 Ldod31

ddfeel
except
dd0oo1
1d0e01
except
(Odddo1
0d1d21 ddddel
0Eeeel
0Fdeel cxcept
except OEEcO1

OB
0E0e41

except
ddedel 0dEdO1
except 2dodz21
] d{)d2 0d0dE1

edled1

—— except
ddddal UdOeDl \ eddddl
exce pt except

1d1d11

Figure 20. Our Code of Behavior for Princes in 6-bush Rose-gardens with a 1-rose Bush.
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Dots-and-Boxes

Come, children, let us shut up the box.
William Makepeace Thackeray, Vanity Fair, Ch. 67.

I could never make out what those damned dots meant.
Lord Randolph Churchill.

Dots-and-Boxes is a familiar paper and pencil game for two players and has other names in
various parts of the world. Two players start from a rectangular array of dots and take turns
to join two horizontally or vertically adjacent dots. If a player completes the fourth side of a
unit square (box) he initials that box and must then draw another line (so that completing a
box is a complimenting move). When all the boxes have been completed the game ends and
whoever has initialled more boxes is declared the winner.

A player who ean complete a box is not obliged to do so if he has something else he prefers
to do. Play would become significantly simpler were this obligation imposed; see the article
by Holladay mentioned in the references.

Figure 1 shows Arthur’s and Bertha's first game, in which Arthur started. Nothing was
given away in the fairly typical opening until Arthur was forced to make the unlucky thirteenth
move, releasing 2 boxes for Bertha. Her last bonus move enabled Arthur to take the bottom
3 boxes, but he then had to surrender the last 4.

This is how most children play, but Bertha is brighter than most. She started the return
match with the opening that Arthur had used. He was happy to copy Bertha's replies from
that game, and was delighted to see her follow it even as far as that unlucky thirteenth move,
which had proved his undoing (Fig. 2). He grabbed those 2 boxes and happily surrendered the
bottom 3, expecting 4 in return. But Bertha astounded him by giving him back 2. He pounced
on these, but when he came to make his bonus move, realized he was doubled-crossed!

541
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Figure 1. Arthur’s and Bertha's First Game.

Bertha beats all her friends in this double-dealing way. Most children play at random
unless they've looked quite hard and found that every move opens up some chain of boxes.
Then they give the shortest chain away and get back the next shortest in return, and so on.
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13 14

Figure 2. Bertha's Brilliance Astounds Arthur.

But when you open a long chain for Bertha, she may close it off with a double-dealing move
which gives you the last 2 boxes but forces you to open the next chain for her (Fig. 3). In this
way she keeps control right to the end of the game.

o
mﬂ-//
"/

Figure 3. Bertha's Double-Dealing Move.

You can see in Fig. 4 just how effective this strategy can be. By politely rejecting two
cakes on every plate but the last you offer her, Bertha helps herself to a resounding 19 to 6
victory. In the same position you'd have defeated the ordinary child 14 to 11.

Double-Dealing Leads to Double-Crosses

Each double-dealing move is followed, usually immediately, by a move in which two boxes
are completed with a single stroke of the pen (Fig. 5). These moves are very important in
the theory. We'll call them doublecrossed moves, because whoever makes them usually has
been!
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You to Move Bertha {B) beats you(y)
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=1 1
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3-chain 1 2
5-chain 3 2
8-chain 6 2
9-chain 9

19 6

Figure 4. Double-Dealing Pays off!
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You (¥) beat the
ordinary child {c}
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Figure 5. A Doublecross—Two Boxes at a Single Stroke.

Now Bertha’s strategy suggests the following policy:

Make sure there are long chains about
and try to force your opponent to be
the first to open one.

Try To Get Control . ..
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We'll say that whoever can force her opponent to open a long chain has control of the game.

Then:

When you have control, make sure you
keep it by politely declining 2 boxes
of every long chain except the last.

... And Then Keep It.

The player who has control usually wins decisively when there are several long chains.
So the fight is really about control. How can you make sure of acquiring this valuable
commodity? It depends on whether you're playing the odd- or even-numbered turns ... .

Figure 6. Which Is Dodie and which Is Evie?

Arthur and Bertha live next to the Parr family, in which there are two little sisters called
Dodie and Evie (Bertha often teases them by calling them the Parrotty Girls!). You can see
them playing the 4-box game in Fig. 6. Dodie’s a year younger than Evie and so always has
first turn in any game they play. They've got so used to playing like this that even when
they're playing somebody else, Dodie always insists on taking the odd-numbered moves while
Evie will only take the even-numbered ones:

Dodie Parr: odd parity,
Evie Parr: even parity.
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The rule that helps them take control is:

Dodie tries to make the number of initial dots
+ doublecrossed moves odd.
Evie tries to make this number even.

Be SELFish about Dots + Doublecrosses!

In simple games the number of doublecrosses will be one less than the number of long chains
and this rule becomes:

THE LONG CHAIN RULE

Try to make the number of initial dots
t eventual long chains
even if your opponent is Euvie,
odd if your opponent is Dodie.

The OPPOsite for Dots + Long Chains!
The reason for these rules is that whatever shape board you have on your paper, you'll find that:

Number of dots you start with
+ Number of doublecrosses

= Total number of turns in the game.

We'll show this in the Extras.

How Long Is “Long™?

— 1I—— 1= ]
N/ N/
E 18]

Figure 7. Bertha's Endgame Technique.
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We can find the proper definition of long by thinking about Bertha’s endgame technique.
A long chain is one which contains 3 or more squares. This is because whichever edge
Arthur draws in such a chain, Bertha can take all but 2 of the boxes in it, and complete
her turn by drawing an edge which does not complete a box. Figure 7 shows this for the
3-square chain. A chain of 2 squares is short because our opponent might insert the middle
edge, leaving us with no way of finishing our turn in the same chain. This is called (Fig. 8(a))
the hard-hearted handout.

e

Figure 8 (a). Hard-Hearted Handouts.
Figure 8 (b). Half-Hearted Handouts.

When you think you are winning, but are forced to give away a pair of boxes, you should
always make a hard-hearted handout, so that your opponent has no option but to accept. If
you use a half-hearted one (Fig. 8(b)) he might reply with a double-dealing move and regain
control. But if you're losing, you might try a half-hearted handout on the Enough Rope
Principle (Chapter 1 Extras). Officially this is a bad move, since your opponent, if he has
any sense, will grab both squares. But boys by billions, being bemused by Bertha’s brilliance,

blindly blunder both hoxes back.

The 4-Box Game

When Dodie was very young, the girls often played the 4-box game and offset Dodie’s first
move advantage by calling it a win for Evie (the second player) when they each got 2 boxes:

TWO TWOS IS A WIN TO TWO

At first Dodie would never give away a box if she could see something else to do, and Evie,
who you can see is a very symmetrical player, would always win by copying Dodie’s moves
on the opposite side of the board. But after watching Bertha playing Evie, Dodie found how
to counter this strategy by making a Greek gift on her 7th move. Evie can still win if Dodie
dares to stray from the Path of Righteousness but must resist her temptation to make every
move a symmetrical one (Fig. 9).
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Figure 9. Evie Envisaging every Eventuality.

Even though Dodie has the win, it’s much harder to write out in full her best plays against
sufficiently cunning opponents. In Fig. 34 of the Extras we give an adequate strategy for Dodie
and in Fig. 35 a complete list of P-positions for both players. This little game is full of traps
for the unwary, and those of you who have written to us for advice on becoming Professional
Boxers will find these tables very useful in the bruising preliminary contests on the 4-box
board. If the chain lengths are

loop of 4
4 or 242
3+1 14+14+1+4+1

the winner will usually be
Dodie or Evie
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in agreement with the Long Chain Rule, but on this small board, Dodie should often defy the
rule and win by splitting the chains as 2 + 1 + 1.

The 9-Box Game

Surprisingly, the Long Chain Rule makes the 9-box game seem easier than the 4-box one. This
time Evie wins, and her basic strategy is to draw 4 spokes as in Fig. 10, forcing every long
chain to go through the centre. Against most children this wins for Evie by at least 6-3, but
Dodie can hold her down to 5-4, perhaps by sacrificing the centre square, after which Evie
should abandon her spoke strategy. Of course, Evie's real aim is to arrange that there's just
one long chain, and she often improves her score by forming this chain in some other way.

o s] [+ o] ¢} o}
0 I O O} I o}
Oy ] o] O}
© o} I o o4 I o] o

Figure 10. Lucky Charms Ward Off more than One Long Chain; Evie Puts Spokes in Dodie’s Wheel.

Evie usually prefers to put her spokes in squares where another side is already drawn, and
she’s careful to draw spokes in only one of the two swastika patterns of Fig. 10. There usually
aren’t any double-crossed moves, so that Evie wins at the (16 + 0 =) 16th turn.

Dodie tries to arrange her moves so that some spoke can only be inserted as a sacrifice,
and either cuts up the chains as much as possible (maybe with a centre sacrifice) or forms two
long chains when Evie isn't thinking. Every now and then a half-hearted handout has saved
the game for her just when she thought that all was lost.

The 16-Box Game

We don’t know who wins on the 4x4 box board, which makes a very interesting game to play.
Evie tries to make the number of long chains 2, while Dodie tries to cut it down to 1 or force
it up to 3.

o o o o o s o o ©o @
o o o © o ©
- o -5 1 o o o I o ©
o o -
o o © o © o o @ ¢ 90

Figure 11. “Come into my symmetrical parlor!”
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Evie beats many children with her symmetry strategy, but Dodie remembers her trick from
the 4-box game. If she thinks her opponent will mimic her every move, she can lure him into
the spider’s web of Fig. 11(a), but when he’s less predictable she finds it safer just to use the
middle of the web (Fig. 11(b)). Dodie doesn’t usually open with Fig. 11(c), because she finds
the symmetry strategy very hard to beat.

Other Shapes of Board

To beat all your friends on larger square and rectangular boards you’ll really need the Long
Chain Rule. Remember to count a closed loop of 4 or more cells as fwo long chains and
that each doublecross, no matter who makes it, changes the number of long chains you want.
(Think of a doublecross as a long chain that’s already been filled in.) It's good tactics to make
the long chains as long as possible and avoid closed loops when you can, because you forfeit
four boxes when declining a loop. These rules work for all large boards and even for triangular
Dots-and-Boxes boards, like that in Fig. 12.

Figure 12. A Board with 28 Dots and 36 Triangular Cells.

Of course, if your opponent is also using the Long Chain Rule , the fight for control might
be quite hard. The game of Nimstring, discussed in the rest of this chapter, is what control
is all about. There’s a piece in the Extras that describes some of the rare occasions when you
might find it wise to lose control.

Dots-and-Boxes and Strings-and-Coins

You can play a dual form of Dots-and-Boxes, called Strings-and-Coins, with strings, coins
and scissors. The ends of each piece of string are glued to two different coins or to a coin and
the ground (each string has at most one end glued to the ground) and each player in turn cuts
a new string. If your cut completely detaches a coin, you pocket it and must then cut another
string (if there’s one still uncut). The game ends when all coins are detached and the player
who pockets the greater number is the winner.
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Arthur’s Move Bertha's Move Arthur’s Move Bertha's Move
1 2 3 ¥

9 10 1 2

»:?H,& B 8 B A 8 8 8
PSS S5 TS 6 DR
G 4 4 4 4 4 4

f3 ?_f@ ': 16

Figure 13. A Strings-and-Coins Game—the Dual of Figure 1.

Figure 13 shows the dual of Arthur’s and Bertha's first game (compare it with Fig. 1). It
started with 9 coins connected by 24 strings, 12 of them between coins and coins, the other 12
between coins and the ground. We use little arrows for strings that run to the ground. The
coins and strings form the nodes and edges of a graph. It’s easy to make a graph to correspond
to any Dots-and-Boxes position. However, there are lots of graphs which don’t correspond to
such positions; for example the graph may have cycles of odd length or nodes with more than
4 edges, or the graph may be non-planar. In fact Strings-and-Coins is a generalization of
Dots-and-Boxes.
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Nimstring

The game of Nimstring is played on exactly the same kind of graphs as Strings-and-Coins,
and you make exactly the same move by cutting a string (which is a complimenting move
whenever you detach a coin). In Strings-and-Coins the winner is the player who detaches the
larger number of coins, but Nimstring is played instead according to the Normal Play Rule.
So, for ordinary Nimstring positions you lose when you detach the last coin, for then the rules
require you to make a further move when it is impossible to do so. (But a Nimstring graph
may have a string joining the ground to itself, and if the last move cuts this it doesn’t detach
a coin, and so wins.)

Nimstring looks quite different from Strings-and-Coins, but closer investigation shows that
Nimstring is in fact a special case of Strings-and-Coins.

You can’t know all about Strings-and-Coins
unless you know all about Nimstring!

(a) (b)

Figure 14. (a). A Hard Nimstring Problem. (b). This Strings-and-Coins Problem Is just as Hard.

Figure 14 shows the construction that proves this. If G represents an arbitrary Nimstring
problem, we add a long chain to it and consider the resulting Strings-and-Coins game—the
long chain should have more coins than G. Because the chain is so long and whoever first cuts
a string of it allows his opponent to capture all the coins of the chain on his next turn, both
players will try to avoid cutting any string of the chain. Neither player can force his opponent
to move on the chain until all the strings of G have been cut. In other words, the only way to
win the Strings-and-Coins game of Fig. 14(b) is to play a winning game of Nimstring on the
graph G.
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(a) ()

Figure 15. (a). Another Nimstring Game. (b). A Corresponding Strings-and-Coins Game.

Figure 15 shows another construction. This time we get the Strings-and-Coins game by
adding several long chains and cycles to the Nimstring game G. If these are long enough the
winning strategy for the Strings-and-Coins game is then:

If your opponent moves in G,
reply in G with a move from
the winning Nimstring strategy.
If he moves in a long chain,
take all but two coins of that
chain, leaving just the string
which joins them.

If he moves in a long cycle,
take all but four coins of the
cycle, leaving them as two pairs
each joined by a string,.
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This strategy gives you all but 2 coins of each long chain and all but 4 of each long cy-
cle, so it will win for you if the total number of nodes in the added chains and cycles exceeds

(the number of nodes in G)
+ 4 x (the number of added long chains)
+ 8 x (the number of added long cycles).

In practice the Nimstring position will often contain (potential) long chains of its own, so
that the strategy is of wider application. Recall that the “all but 2” principle was used by
Bertha in her second game with Arthur (Fig. 2). Well-played games of Dots-and-Boxes are
usually played like the corresponding Nimstring games, except at the very end. The last long
chain in a Nimstring game is treated like any other; the winner takes all but the last 2 coins,
which he gives to the loser by a hard-hearted handout. For the last chain in Dots-and-Boxes,
of course, winner takes all!

Why Long Is Long

The argument explains why “long” must be defined precisely as follows. We should call a
chain long if it contains 3 or more coins, because no matter which string of such a chain our
opponent might cut, we may take all but 2 of its coins and finish by cutting another string of
the chain. We must call a chain of 2 coins short, because he might cut the middle string and
prevent us from declining those 2 vital coins (the hard-hearted handout). For a similar reason
a closed loop of 2 or 3 coins would be called short (short loops don’t arise in rectangular
Dots-and-Boxes). However, a loop with at least 4 coins is called long, because we can politely
decline the last 4 coins no matter which string our opponent cuts. Figure 16(a) shows how to
do this on a 6-loop. When your opponent has cut the first string as shown, you only take 2 of
the coins and then cut the string in the middle of the remaining 4. Figure 16(b) shows how
this corresponds with Bertha's way of playing Dots-and-Boxes.

5o —

o

Figure 16. Bertha Politely Declines a Long Loop.
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Well-played games of Dots-and-Boxes frequently lead to the duals of positions like those in
Fig. 15(b). Most of the coins are in the long chains and loops, and the winner is whoever can
force his opponent to cut the first string in one of these. It seems to be almost always the case
that the winning strategy for Nimstring also gives the winning strategy for Strings-and-Coins.
There are many other graphs than those satisfying the conditions of Fig. 15(0) for which this
can be proved to happen. To win a game of Dots-and-Boxes or Strings-and-Coins, you should
try to win the corresponding game of Nimstring and at the same time arrange that there are
some fairly long chains about. In the rest of this chapter we’ll teach you how to become an
expert at Nimstring,.

To Take or Not to Take a Coin in Nimstring

A coin which has only a single string attached is capturable. Whenever there’s a capturable
coin the next player has the option of removing the corresponding branch, thereby detaching
the coin and getting another (complimentary) move. For some graphs this is the best move;
for others, including one of those encountered by Bertha in the game of Fig. 2, the winning
strategy is to refuse to detach the coin. As you might guess, the decision as to whether it’s
better to take a coin or decline it often depends on the entire graph. However a great deal can
be deduced by examining only local properties of the graph near the capturable coin.

Any capturable coin must look like one of the six possibilities in Fig. 17. The string from
the capturable coin goes either to the ground (Fig. 17(a)) or to another coin. If to another coin,
the number of strings there is either one (Fig. 17(b)), two (Figs. 17(c), (e) and (f)) or three or

(o

o oto otolo
(a) (b) (c)
OAoks
(d) (c)

Figure 17. (a). TAKE! A free coin. (b). TAKE! Two free coins and a doublecross. (¢). TAKE! Three
free coins and a doublecross. (d). TAKE! A free coin. (e). WIN! (f). WIN! Half-hearted handouts.
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more (Fig. 17(d)). If there are two strings, the second goes either to another capturable coin
(Fig. 17(c)), or to the ground (Fig. 17(e)), or to a coin with two more or strings (Fig. 17(f)).
In each of the six cases the cloud contains all the coins and strings not regarded as near enough
to the capturable coin. The dotted lines in Figs. 17(d) and (f) are possible additional strings
which may or may not be present.

We claim that in the first four cases (Figs. 17(a)-(d)) the player to move might as well cut
string A and capture the coin, and in Fig. 17(c), he might as well continue by cutting string
B, taking two more coins. For suppose you have a winning strategy starting from one of these
graphs. If this tells you to complete your first turn by cutting only certain unlettered strings,
then your opponent has the option of beginning his turn by cutting the lettered ones. But the
same position will be reached if instead you first cut all the lettered strings and then cut the
same unlettered ones as befare. If there’s any winning strategy at all, starting from these four
cases, there’s one which begins by cutting the lettered strings. So there’s no loss in generality
in supposing that a good player will TAKE a capturable coin of one of the four types in Figs.
17(a)—(d).

The other two positions (Figs. 17(e) and (f)) are much more interesting. If it’s your turn
to move in one of these two cases, you can either detach the capturable coin by cutting string
A, or decline to take it by cutting string B. No matter what the rest of the graph might be,
one or other of these two moves will WIN. But you might need to look at the whole graph to
decide whether your winning strategy begins by cutting string A or string B!

This somewhat surprising result is proved by a cunning use of Strategy Stealing (Fig. 18).
We ask, for the games of Figs. 17(e) and (f):
who wins the smaller game G consisting of just the unlettered strings (Figs. 18(€) and 18(f))?

This is either the player who has to move from G or the player who doesn’t. Whoever
this fortunate player is, you should arrange to steal his strategy. If the player to move from
G can win, then when playing from Fig. 17(e) or (f) you should start by cutting string A
(which detaches a coin, so you continue), then cut string B (detaching another coin, so you
continue again) and then begin the game on G, which of course you will play according to the
winning strategy for the first player. On the other hand, if there’s no winning move for the first
player from G then, starting from Fig. 17(e) or (f), you should finish your turn immediately
by cutting string B and so force your opponent to start the game & (he might as well start
by cutting string A; if he doesn’t, you will later).

The fact that the declining move forfeits 2 coins to your opponent makes no difference
in Nimstring, where the winner is determined by the last move. In Strings-and-Coins (and
Dots-and-Boxes) it might matter, but is unlikely to when there are long chains about.

Sprague-Grundy Theory for Nimstring Graphs

We now try to define values for arbitrary Nimstring graphs. We'd like these values to be
nimbers so that we can use the ordinary Mex and Nim Addition Rules. The only trouble is
that there are positions like that shown in Fig. 19.




& Sprague-Grundy Theory for Nimstring Graphs 557

Figure 17 (e} Figure 17 {f}

Deﬁch, Dadim
EITHER /537, /OR\ i

Figure 18{e) Figure 18{f}

Figure 18. Strategy Stealing after a Half-hearted Handout.

~—O0—=0

Figure 19. A Loony Nimstring (or Dots-and-Boxes) Position.

Our discussion of Fig. 17(e) shows that no matter what graph G is added to this, the
result is a win for the first player. The supposed value, *z, for Fig. 19 must therefore have the
property that

*xx + *y # 0
for every nimber #y, including even *x itself, so that in particular

#x + *x #£ 0.
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Those of you who have read Chapter 12 will see at once how to resolve this paradox.
Figure 19 is what we call a loony position, whose value is 9. The theory of complimenting
and complimentary moves in that chapter applies to Nimstring (where the complimenting
moves are those that capture coin’s) and shows that every position has either an ordinary
nimber value or the special value ¥. But don’t reread Chapter 12 now, because we can easily
summarize the rules for finding values at Nimstring:

The value of a graph without strings is 0.

The value of a graph with a capturable coin of
one of the four types in Figs. 17(a)—(d) is equal
to that of the subgraph obtained by removing
the capturable coin(s) and its string(s).

The value of a graph with a capturable coin of
one of the two types in Figs. 17(e) and (f) is .

The value of a graph with no capturable coins
is found from the values of the graphs left
after cutting single strings by using the Mex
Rule (Chapter 4).

VALUES FOR NIMSTRING

When adding these values, remember that

PHO=D+l=P+2=...=D+D =",

as well as the ordinary nim-addition rules.

We show the calculation for some graphs in Fig. 20. When there are no capturable coins we
write against each string the nim-value of the sub-graph obtained by cutting that string. Thus
the last picture has options of nim-values 0, 1, 3, i.e. values %0, %1, 3, and so its own value
is *2, because 2 = mex(0,1,3). Strings marked D are loony options for the first player—if he
cuts such a string he will LOSE against proper play even if some other graphs are added to
the position. The nim-value of each graph is found from the mex of the numbers against its
strings—in this you should ignore the “p values, which correspond to suiciding moves.

Although Dodie wins the 4-box game of Dots-and-Boxes, we can deduce from Fig. 20 that
Evie wins the corresponding Nimstring position:




o 1 4 ) 0 E)
s ) *1 3 0 o*i 3

Sprague-Grundy Theory for Nimstring Graphs

Figure 20. Working Out Values for Nimstring Graphs.
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Figure 21. Noteworthy Nimstring Nimbers.
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This means that even in Dots-and-Boxes Evie should win

a] o O
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Figure 21 assembles answers for all graphs with at most 4 ends and no internal circuit.
You'll find an extended table in the Extras that covers tree-like graphs with 5 ends.

All Long Chains Are the Same

Look at the various positions of Fig. 22, in which the clouds all conceal exactly the same thing,
and the necklaces that hang from them all have at least three beads. The graphs all behave
the same way in Nimstring because all the visible edges will always be loony moves.

SOG4

Figure 22. Three or More's a Crowd.

Provided a chain has 3 or more nodes along it,
the exact number doesn’t make any difference
to the value.

This makes it handy to have a special notation for long chains:
— AN
mRans
—O0—0—0— o O0—-0—~C—0— o O0—0O0—0—C0—C— ot -
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Which Mutations Are Harmless?

More generally we can put in or take out some beads on any Nimstring graph G to obtain
mutations of the graph (a bead, of course, is a node with just 2 edges). Figure 23 shows a
graph G and two mutations, H and K.

a

Figure 23. A Graph, a Harmless Mutation and a Killing One.

We'll use the word stop to mean either an arrowhead where the graph goes to ground (an
end) or any of the nodes which have 3 or more edges (the joints). A path between two stops
is long if it passes through 3 or more intermediate nodes, short otherwise. Mutation usually
affects the value, but there are a lot of harmless mutations that don’t:

A mutation between two graphs will certainly be
harmless if every short path between stops in either
graph corresponds to a short path in the other.

THE HARMLESS MUTATION THEOREM

In Fig. 23, H is a harmless mutation of G, since the only short paths are AE, Af, Ef,
and the ones other than Aa that don’t pass through a stop. But AFE is long in K, and Cd is
short, so this mutation is not covered by our theorem. In fact G and H have value %2, while
K has value 0.

When G and H are related by a harmless mutation you just play H like G. A non-loony
move must cut some string of a short chain between two points A and B that were stops at
least until the move was made. A and B must have been stops in the original graph and we
can find a similar non-loony move in the mutated graph because the distance between A and
B will be short. (Fig. 24).
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Figure 24. Like Moves in Harmless Mutations.

We can strengthen our Mutation Theorem a little:

If the path between two stops
passes through one end of a
long chain, you needn’t worry
about the length of the path.

(For in a graph like Fig. 25—in which A or B might have been ends—AB won’t become a
chain unless someone makes a loony move cutting the long chain ending at C'.)

Figure 25. The Path AB Passes a Long Chain at C'.
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Chopping and Changing

There are lots of more drastic changes we can make to Nimstring graphs without affecting
their values; for instance:

Long chains snap!

This was hinted at in Fig. 22, and Fig. 26(a) shows how it's written in our long chain notation.

The remaining equivalences of Fig. 26 are more interesting. The middle equivalence of
Fig. 26(b) is particularly useful (the left equivalence is a long chain that snaps). It asserts
that when an edge runs to a node from which two long chains emanate, then this edge may
be replaced by an edge running directly to the ground. More generally, when two long chains
are attached to a node, all other edges ending at this node may be replaced by edges running
to the ground (Fig. 26(c)).

The idea of the proof is that a node at the end of two long chains can’t be captured
until after someone concedes the game by making a loony move. We can apply the equality
between the first and last parts of Fig. 26(b) to every branch that runs to the ground, so as to
eliminate ground branches from every graph. But usually it’s more convenient to use it in the
other direction, eliminating many branches and nodes by introducing new ends. Sometimes,
as in Fig. 26(d), this gives rise to a branch joining the ground to itself (a 0 by 1 game of
Dots-and-Boxes!); such a branch contributes 1 to the value.

The equality between the first three parts of Fig. 26(e) follows from the Harmless Mutation
Theorem, but that between these and the last three doesn’t, because some short chains have
become long. The letters label corresponding moves, and the “’s show moves which we should
ignore. Figures 26(b), (d), (f) and (g) show that we can sometimes eliminate circuits from our
graphs—the last diagram of Fig. 26(f) is our shorthand notation for any of the previous three,
which are harmless mutations of each other. Figure 26(h) has many variants, abbreviated in
Fig. 26(i) (using the notation of Fig. 21).

Vines

A vine is a Nimstring graph without circuits or capturable nodes in which all the joints lie
on a single long path (the stem) and each joint belongs to just 3 edges. The chain joining an
end to its nearest joint is called a tendril, so a single-jointed vine has 3 tendrils (Fig. 21).
Vines with more joints have 2 tendrils at their endmost joints and just 1 at intermediate ones.
If the distance between two neighboring joints is long, the vine decomposes into two smaller
ones because long chains snap, so we can suppose such distances short, if we like.

A Twopins-vine is one whose every distance between non-neighboring stops (which may
be either ends or joints) is long. It is a remarkable fact that the value of any Twopins-vine
is equal to that of a corresponding configuration in the game of Twopins (Chapter 15). Each
joint with a short tendril becomes a column of two pins (even if it has also a long tendril);
each other joint becomes a column of one; and two neighboring joints a long distance apart
correspond to an empty Twopins column (Fig. 27). A bowling shot which removes a single
column at T'wopins corresponds to a tendril move at Nimstring; one which removes a pair of
columns corresponds to a move on the stem of the vine.
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Figure 26. Some Useful Nimstring Equivalences.
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Figure 27. A Twopins-vine and a Game of Twopins.
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Our remarks about vines show that:

You can’t know all about Nimstring
without knowing all about Twopins!

If you've read Chapter 15 you'll know that Kayles and Dawson’s Kayles are just special cases
of Twopins, so, combining several slogans of this chapter:

You can’t know all about
Dots-and-Boxes
unless you know all about
Kayles and Dawson's Kayles!

Figure 28. A Snappable Dawson’'s-vine, Iy + D4, Value 0 + #2 = 2.

A Dawson’s-vine (Parthenocissus dawsonia) is a Twopins-vine all of whose tendrils are
long. Of course if any distance between neighboring joints is leng the Dawson's-vine will
snap, like the one in Fig. 28. If all these distances are short, the nim-values, D, of n-jointed
Dawson’s-vines are (Chapter 4):




n [0123456789 11 13 15 17 19 21 23 25 27 29 31 33
D, 001120311033 224 33011302110
D,.34]40112031103 3224 33011302110
D,igs|48112031103 3224 33011302...
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A Kayles position corresponds to a Twopins-vine with a short tendril at every joint. How-

ever, we can extend this class by observing that we don’t need to worry about some of the
distances between joints and ends:

A vine is a Kayles-vine if
(i) every joint has a short tendril, and
(ii) every distance between two ends or
two non-neighboring joints is long.

Again, if any distance between neighboring joints of your Kayles-vine is long, it snaps
(Fig. 29). From Chapter 4, the nim-values, K,,, of unsnappable n-jointed Kayles-vines are:

n 0123456789 1011 12 13 14 15 16 17 18 19 20 21 22 23
K, 01231432142 6 4 1 2 7 1 4 3 2 1 4 6 7
K044 1 2 5472186 7 4 1 2 3 1 4 7 2 18 27
Knpag|4 12 1472142 7 4 1 2 8 1 4 7 2 18 6 7
Koia]|4 12 1472182 7 4 1 2 8 1 4 7 2 18 2 7

Figure 29. A Snappable Kayles-vine, Ko + K4, Value #2 4+ *1 = 3.

The correspondence between the Twopins-vines and the game of Twopins enables us to
interpret the Decomposition Theorem of Figs. 26(h) and (i) as a generalization of the De-

composition Theorem for Twopins. There are Nimstring generalizations for all the Twopins
equivalences:
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The last two enable us to suppose that the endmost joints of a Twopins-vine have short
tendrils (they correspond to uses of Fig. 26(b)). Collectively the Twopins equivalences allow
us to suppose that the joints with no short tendrils come in strictly internal blocks of 3 or
more and so all the simplest Twopins-vines reduce to compounds of Kayles-vines. Figure 30
is a small Twopins dictionary culled from Chapters 4 and 15. The equivalences of Fig. 26
enable us to show that many graphs that don’t look like vines are really equivalent to them;
for instance Fig. 31(a) is equivalent to Dg.

Kayles-vines, K, " Dawson’s-vines, D, Other Twopins-vines
* = *1 1 - - = 0 & ok o+ v 0w % = %2
* % = %2 2 .. = * = %] % ok ok .. x = %3
* % ok = %3 3 ... = % - = k] % ok oeoe o % % = %]
K K = x] 4 UL = x % = %2 I T T |
® ok kK * =x%4 5 e = % + * = 0 % % % £+ 0% =%
ok ok K ok % =x*3 0O LR = . = %3 % ok kv % x = x4
kkkkkkx = %2 T = ke s ek moag] E E E e oe e x = %3
kkkk Kk ok ok = %] 8 R % 0 e e e ok =kl koA oeoeer ok ox =*3
kkkkkkk ok = % 9 Pe s e e e e s = g e zx = [ % % o s mow s ok = %3
kkkrd ek erns =42 10 o0 et = a0 =g ke e ke w = %]

Figure 30. Various Vines Values.

Twopins-vines are decomposing in the sense that when any branch of the vine is removed
the new vine decomposes—often by snapping a chain—into two smaller ones. Some other vines,
including that of Fig. 31(b), are decomposing in the same sense. It is rather straightforward
to compute the value of a decomposing vine from the values of those of its subvines which
include all of a consecutive sequence of the original tendrils. Since the number of such subvines
is proportional only to the square of the number of tendrils this idea is feasible for quite long
decomposing vines, and can easily be implemented on a computer.
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(a)

(b)

Figure 31. Two Uses of Figure 26. (a) A graph equivalent to the Dawson’s-vine Dg. (b) A decom-
posing vine.

Dots-and-Boxes is, like other good games, remarkable in that it can be played on several
different levels of sophistication.

e First, there’s Arthur’s way: you just don't open up any hoxes unless you have to and then
you open as few as possible. This seems to be the only level that many players reach.

e Then there’s Bertha’s double-dealing endgame technique which gets the winner a lot of
boxes at the finish and makes it seem likely that Nimstring will be useful.

e Next comes the Parrotty girls’ parity rule for long chains.

e Then we realize that to get the right parity is an exercise in Sprague-Grundy theory, so
we need tables of nim-values.

e The unwieldiness of these tables forces us to use equivalence theorems whenever we can,
and to look for interesting classes of analyzable graphs.

e We can use T'wopins theory to reduce many games to positions in the well-known games
of Kayles and Dawson's Kayles.

e Finally, experts will need to know something about the rare occasions when the Nimstring
theory does not give the correct Dots-and-Boxes winner.

What moves would you recommend for the positions in Fig. 327 We give our own recom-
mendations in the Extras.
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Figure 32. Try These Dots-and-Boxes Problems.




Extras

Dots + Doublecrosses = Turns

Suppose we play a Dots-and-Boxes game, starting with D dots, that takes T turns to draw
L lines and finish with B boxes. Then if there are no doublecrosses, each line except the last
either creates just one box or hands the turn to the next player, so

L=B+T-1
However Fig. 33 shows that
L=B+D-1,

so a game with no doublecrosses lasts for exactly the same number of turns as the initial
number of dots. But each doublecross creates 2 boxes instead of 1, so in general the number
of turns will be the number of dots we started with plus the number of doublecrosses.

When we've broken
B edges to flood
the B boxes ...

S L SGROME-
e e e SN O ...there'll be just D — 1 roads,
- T\ 77\~ alllcading to Rome (I from

each other towi).

Figure 33. Euler via Rademacher and Toeplitz.
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How Dodie Can Win the 4-Box Game

Figure 34 shows a sufficient set of P-positions to enable Dodie to win the 4-box game. Figure
35 shows all P-positions except those in which a player has already signed enough boxes to
win, classified according to the number of moves made. Figure 36 shows the three A/-positions
in which a sacrifice wins but a non-sacrifice loses. In these figures broken lines indicate boxes
with three sides already drawn.
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Figure 34. A Winning Strategy for Dodie.
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When Is it Best to Lose Control?

It is clearly not always a good idea to keep control. For suppose all that’s left of a game is 1001
chains, all of length 3, and your opponent has just opened the first of these. If you slavishly
insist on keeping control to the very end, you'll have to give away 2 boxes in each chain but
the last and so you'll only get 1003 to your opponent’s 2000.

What the question really boils down to is this: when your opponent has just opened a long
chain or made a half-hearted handout, should you, like Bertha, decline the last 2 boxes, or,
like Arthur, grab them all and be forced to move elsewhere? Suppose for a moment that you
use Bertha's tactic and give up 2 boxes in order to force your opponent to move first in the
rest of the position, in which, by playing perfectly, you get D more boxes than your opponent.
Then Arthur's strategy would take those 2 boxes and give you D less of the rest than your
opponent. Comparing:

Bertha’s technique  Arthur’s technique
-2+ D 2-D

shows you should

adopt Bertha’s technique
unless ) is less than 2.
(Either will do, if D is just 2.)

That’s all very well, but you still won't know which is best if you don’t know the value
of D. We can't say much about this in general, but we have a rule which gives DD when the
position is made up entirely of long chains of lengths

a,be,....
For such a position
D=(a—4)+(b—-4)+(c—4)+...+4

provided the right side is positive; otherwise D =1 or 2.
Using this rule we can answer our question for positions made entirely of chains:

You should keep or gain control, unless
there are evenly many short chains, and
either there are no long chains
or the long chains can be partitioned
into two sets, each of average
length strictly less than 4.

The A.B.C. of Control when Long Chains are Short.

Of course, for such positions, keeping or gaining control involves making Bertha's move if this
would leave an even number of unopened short chains, and Arthur’s move otherwise.
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Figure 37. Dodie’s Drawing the Game—Evie Loses Control.

Figure 37(a) shows a position where Evie, who's not feeling very well, has only managed
to keep control so far by sacrificing 3 boxes. Dodie’s now foolishly opening a chain of length
4 with the move shown. Since the remaining long chains satisfy the exceptional condition in
our A.B.C., Evie’s best move (Fig. 37(b)) is to lose control and take all 4 squares of the chain
as Arthur would. The boxes are then divided:

4-chain| three 3-chains

to Evie 4 20 2 %
an ¢ e,
to Dodie 3 already + 1 1 13
where Bertha's response would give
to Evie 2 ‘ 1 i1 ‘ 3 7
to Dodie 3 already + 2 2[ 2 a g loss.

Computing the Values of Vines

On most graphs made of Twopins-vines and long chains a winning Nimstring strategy really
does win at Dots-and-Boxes. For let IV be the number of separate vines, counting long chains
as unjointed vines. Don’t use Fig. 26(a) to decompose vines with long stems—instead let 1
denote the number of these internal long stems. Let J be the total number of joints and L the
Nimstring loser’s present score. We study the quantities

f=L+2J+2V, g=I+2L+3J+4V
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during any double turn, consisting of the loser’'s move and the winner’s reply, assigning any
boxes given away by a move to that move rather than to the next one. First for the Nimstring

winner’s move:

Change in

Move on I L J Vv o f q

Stem 0 <2 -2 1 <0 <¢2
Inner tendril | <1 <2 -1 0 <0 <2
End tendril <0 <2 -1 0 <0 <1

And now for the Nimstring loser’s move:

Change in and including winner’s reply
Move on r L J v f g f g
Stem 0 0 -2 1 -2 -2
Inner tendril =1 0 -1 0 -2 <-2 < -2 <0
End tendril <0 0 -1 0 -2 <-3
Loony stem move that
winner must accept <0 0 =2 1 -2 <=2 < =2 < ()
Loony tendril move that
winner must accept <1 0 -1 0 -2 <-2 < -2 <0
Loony chain move
(declined by winner) 0 2 0 -1 0 0 0 <0
Loony stem move
(declined by winner) <0 2 =2 1 0 <2 0 < of
Loony tendril move
(declined by winner) <1 2 -1 0 0 <2 0 < 2f

(No loony chain move makes the winner accept, because by declining he leaves the value un-
changed.) The next to last column shows that f never increases and so:

If the number of nodes, IV,
in the game exceeds

4J+V)

then the Nimstring winner
wins the Dots-and-Boxes game.

(For the loser’s score at the end of the game will be less than N/2.

Since all Dawson’s-vines and many Twopins-vines have more than four nodes per joint,
they satisfy this condition. If g never increased, we could similarly assert that the Nimstring
strategy works for Twopins-vines with

N =T+ 3J 44V,
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but since the daggered entries can be positive a skilful Nimstring loser might win the occasional
Dots-and-Boxes game.

Such cases are very rare. The Nimstring loser can increase g only by choosing a loony stem
or tendril move that the Nimstring winner must decline (most loony moves can be accepted).
Usually the winner has other opportunities to decrease g by playing on an end tendril or
making a move conceding fewer than two boxes.

Even though we have been able to construct some examples (Fig. 32(m)), the difficulties
of composing them and the closeness of their scores reinforce our opinion that:

Your best chances at
Dots-and-Baoxes
are likely to be found
by the Nimstring strategy.

Loony Endgames Are NP-Hard

If you're faced with a position in which all the edges are on long chains you'll lose at Nimstring
because only loony moves are possible. But if you've already got lots of boxes you might still
manage to win the Dots-and-Boxes game. How do you find which loony move to make to stop
your opponent from catching up?

To simplify the argument we’ll suppose that the last move will take place on a chain
(between ground and ground) that'’s long enough to ensure that your opponent’s best strategy
for the remaining boxes is the Nimstring strategy, which requires that he conclude each turn,
except the last, with a double-dealing move. Any of the m moves you make on isolated cycles
will give you 4 boxes, while any of the other n moves on chains (except the last) will give you
2 boxes each, so your score will be

dm + 2n — 2.

Suppose the graph has j joints with total valence v, counting grounded ends as having valence 1
each. A move on an isolated cycle doesn't change the valence, but a move on a chain decreases
the valence by 1 at each end, except that whenever the valence of a joint changes from 3 to 2
that joint disappears. This happens just once for each joint, so

v=2n-+2j

and your score will be
dm+v — 25 — 2.

Since v and j are fixed, we want to make as many moves on isolated cycles as possible. These
isolated cycles are disjoint, and any disjoint set of cycles can be isolated just by playing all
chain moves first.
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You can’t know all about (possibly
generalized) Dots-and-Boxes unless
you know all about how to find
a largest set of node-disjoint cycles
in an arbitrary (possibly non-planar)
graph.

Finding a largest set of node-disjoint cycles in arbitrary graphs is known to be NP-hard
(see the Extras to Chapter 7).

In practice, most Dots and Boxes games are played on reasonably small boards, rarely
larger than 10 x 10. In all loony positions that we have ever encountered on these small
boards, we have easily found a maximal set of node-disjoint loops, by hand, in under a minute.
But finding an order to play the loony moves which forces your opponent to retain control can
still be a challenging problem, which is addressed in a paper by Berlekamp and Scott.

Solutions to Dots-and-Boxes Problems

Here are our answers to the problems in Fig. 32.

(a) Evie wants an even number of long chains. She immediately establishes just two by
drawing either edge at the top left-hand corner.

(b) This time Evie establishes two long chains by sacrificing the box whose lower left corner
is the central dot. An additional sacrifice in the lower left-hand corner will be needed if Dodie
tries to make a third long chain there.

(c) Dodie wants an odd number of long chains. She should sacrifice two boxes by a hard-
hearted handout drawn rightwards from the central dot, and will win 9-7.

(d) Neither player can afford to sacrifice four boxes of the central loop, so the long chain
theory doesn’t really apply. Either player can force a tie (making no sacrifices). A well-played
endgame will have chains of length 3 at top and bottom and a loop of 4 in the centre. The left
side may be a single chain of length 4 or a pair of chains of lengths 1 and 3; either position is
a tie.

(e) A little trap for Nimstring players! The dotted move is the only good Nimstring move,
but involves too much sacrifice and will lose the Dots-and-Boxes game 5-7 against an extremely
skilful opponent. The dashed move loses at Nimstring, but only if the opponent sacrifices two
boxes on the next turn, and with the board then broken into many small pieces we get a tie.
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(f) The Nimstring game is essentially over, but at Dots-and-Boxes what matters is whether
the top left-hand corner becomes a chain of length 2 or two chains of length 1. Dodie should
force the former by drawing the second edge on the top row and will win 13-12 rather than
losing 12-13.

(g) Dodie forces a treble sacrifice! She wants an even number of long chains but can see
only one. Her dotted opening move threatens to create a second long chain at EFG on the next
move. Since Evie can be prevented from making a third long chain, she must cut between
F and @, sacrificing two boxes. Accepting these, Dodie repeats her threat by the dashed
move, which threatens a long chain at CDE. forcing Evie to sacrifice D and E. Dodie accepts
these and repeats the threat yet again, drawing the left edge of B. Although Evie wins the
Nimstring game by sacrificing B and C, Dodie will have 8 boxes: F, G; D, E; B, C; N, O,

enough to win the Dots-and-Boxes game.

(h) Evie does likewise! Starting with the next to last of the top edges she repeatedly
threatens to construct a third long chain at the right. Dodie can stop this only by three 2-box
sacrifices. Evie then makes a loony move conceding the chain of length 3 to the left of the 2
captured boxes, acquiring 2 boxes after the resulting doublecross. Since she has now changed
sides, she threatens to build another long chain in the top left-hand corner, forcing a further
sacrifice from Dodie. She then stops further growth of the length 7 chain and awaits her last
3 boxes to win 13-12.

(i) A very complicated position! Dodie must prevent a third long chain from forming in the
top row. She first sacrifices one of the top corner boxes (and will probably need more sacrifices)
and strives vigilantly to chew up as much of the empty space as she can by extending her long
chains. If Evie sacrifices either long chain too soon, Dodie accepts.

(j) An easy one! There is a treble-jointed Kayles-vine, value #3, and four boxes at the lower
left, value #2 from Fig. 20. Evie wins by drawing the middle top edge or rightmost bottom
one, which reduces K3 to K. (There are other moves that do this, but they sacrifice too
much.)

(k) There’s a 4-jointed Kayles-vine, value *1, at the bottom, and four boxes at top right,
worth #3 from Fig. 20. The rest of the figure is a 5-jointed Kayles-vine, value %4, under a
disguise you can strip off by looking at Figs. 26(a) and (b). Dodie’s Nimstring move must
therefore replace K5 by K3 + K; which she can do only by drawing the vertical edge at the
top left-hand corner or by isolating the loop just to the right of the captured boxes. In this
problem it’s only if Dodie plays carefully that her Nimstring strategy will also win at Dots-
and-Boxes. When she has a choice of several Nimstring moves, she should select whichever
scores more boxes. On the Kayles-vines any stem move (by either player) leads ultimately to
another long chain, which will give two more boxes to Evie. So Dodie prefers to make tendril
moves whenever possible, while Evie selects stem moves which make Dodie respond with more
stem moves.
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(1) A unique winning move! Cut the 12-jointed Kayles-vine into two 5-jointed ones by
separating N from (). The rest is easy!

to
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(m) In the modified problem, if Evie really respected Dodie’s skill, she would resign! If
she opened as before by sacrificing N, O, Dodie could unground E. Evie is then faced with
K; + K + K5, and the Nimstring replies give Dodie two more boxes, e, f or h, i, say the
latter (2). Dodie then (3) ungrounds I, leaving 4K, + K3, and Evie can’t do better than (4)
giving Dodie e and f (say) too. Evie now has 6K, and has won the Nimstring game, but
Dodie makes a loony move (5) on STU, which Evie’s sadly forced to decline (6), conceding
two more boxes. Dodie can make another loony move (7) on HI.J and collect two of those as
well (8). Finally (9), Dodie can reduce 2K to K; by ungrounding C, which makes Evie (10)
sacrifice ¢, d (or a, b). The resulting position

I

C—D—E—F—6G K—I—M

113 :il Z—Y—X——V\

T li) g R—Q—P
|

oo

has five chains, lengths 3, 3, 4, 7, 8, but Evie has only 2 boxes to Dodie’s 12. Although of
the remaining chains Evie collects 17 hoxes to Dodie’'s 8, Dodie wins 20 to 19! Rather than
risk this disgrace, we recommend to Evie a timid opening such as ungrounding FE: it's just
conceivable that Dodie doesn’t remember the first nine Kayles values!
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Some More Nimstring Values

As in Fig. 21, dots near edges are optional additional nodes and a dot equally near two edges
may be placed on either. A wiggly line means 3 or more nodes strictly between the indicated
points. The symbol

900 oo
°

means any case of ®

p—_ .
-

- fn

> o

that has value *n (see Fig. 21).

Nimbers for Nimstring Arrays

To show the sides on which rectangular arrays are grounded we give their dimensions with
primes (or double primes), for example:

2x3 2x¥ 2%y 2= 3"
£ & 1 £ £
*2

Tables 1 and 2 give values for such rectangular arrays:

|1 2 20 3 3 4 4 5 5 6 6 7 7 8
#« 0 2 % o+ 0 2 x x3 0 %2 x =3 0
*2 % #2 % %2 % %2 %

2
3

Table 1. Nimstring Values for Ungrounded Rectangular Arrays or Arrays Grounded along One Edge.

n 2 3 4 5 6 7 3 9 10 11
1"xn * %2 % =2 =3 0 %3 0 * %2
1" xn' 0 * 0 =3 =2 3 *2 5 x4 =5
1" x n" * 0 * 0 *  *2  *x3 % *3

2 xn | %2 #2 % % *

2 xn’ | %2 #2 % %

2 xn” | 0 *2 x5 =

Table 2. Nimstring Values for Arrays Grounded at 1, 2 or 3 Edges.

Figure 39 shows Nimstring values for some less regular arrays.
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Figure 38. The Next Volume of the Nimstring Dictionary.




& Nimbers for Nimstring Arrays 583

TR
1 S T
il
i £ B

Figure 39. Nimbers for Various Arrays.

We have seen that we can play Nimstring on any graphs; here are the nim-values of small
complete graphs, K, and complete bipartite graphs, Ko, n:

n 2 3 4 5 6 7 & 9 10
K, 0 « 0 %= =

Ko, |0 % 0 % 0 % 0 = 0
Ko, | = * # * =% %

Ky, |0 * 0 =

Does the value of K, ,, depend only on the parity of (m — 1)(n — 1)?




584 Chapter 16. Dots-and-Boxes &

References and Further Reading

Several additional results on Dots-and-Boxes can be found in Berlekamp’s booklet, which includes over
100 problems and solutions. More complete and accurate solutions to some of the problems presented
in the first edition of that booklet may be found at http://www.cae.wisc.edu,/”dwilson /boxes/.

Elwyn Berlekamp, The Dots and Bozes Game: Sophisticated Child’s Play, A K Peters, Ltd, Natick,
MA, 2000; MR 2001i:00005.

Elwyn Berlekamp and Katherine Scott, Forcing your opponent to stay in control of a loony Dots-
and-Boxes endgame, in Richard Nowakowski (ed.) More Games of No Chance, (Berkeley CA 2000)
Math. Sci. Res. Inst. Publ., 42 (2002) Cambridge Univ. Press, Cambridge, UK, 317-330.

John C. Holladay, A note on the game of dots, Amer. Math. Monthly, 73 (1966) T17-720: M.R.

Hans Rademacher and Otto Toeplitz, The Enjoyment of Mathematics, Princeton University Press,
1957. Pages T5-76 give the proof of Euler’s theorem.

Katherine Scott, Loony endgames in dots and boxes, MSc. thesis, Univ. of California, Berkeley,
2000.

Julian West, Championship-level play of Dots-and-Boxes, in Richard Nowakowski (ed.) Games
of No Chance, (Berkeley CA 1994) Math. Sci. Res. Inst. Publ., 29 (1996) Cambridge Univ. Press,
Cambridge, UK, 79-84.




-17-

Spots and Sprouts

He shall not live, with a spot I damn him.

William Shakespeare, Julius Caesar IV, i, 6.

The games we treat here are played with spots (or crosses) on a piece of paper, the move being
to join two spots by a curve satisfying various conditions specified in the rules of the game.
We shall always demand that no curve crosses itself or another curve. We have just devoted a
whole chapter to such a game, but here we shall consider games whose theories, while not all
trivial (or even all complete) will occupy only a few pages each. We had to make an exception
for Lucasta, with whom we fell in love.

Rims
Here the move is simply to draw a loop passing through at least one and arbitrarily many of

the spots. The only further condition is that no two loops may cross. A typical Rims position
is shown in Fig. 1. What should be our next move, supposing normal play?

Figure 1. A Game of Rims (or Rails).

585
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On examining the position, we see that the loops divide the plane into regions containing
respectively 5, 2, 3, 1, 1 spots (and sometimes other regions with internal spots). When we
make a move in a region with n spots, we automatically divide it into two regions with a and
b spots, where a + b is less than n, but a and b are otherwise arbitrary. It follows that Rims
is merely a disguised form of Nim with the additional possibility of dividing the heap we've
just reduced into two smaller ones. This is the game 0-7 in the octal notation of Chapter 4,
where we saw that the extra possibility doesn't affect the strategy, so the only good move in
Fig. 1 is to draw a loop through just 4 of the spots in the 5-spot region. The theory of Misére
Nim tells us that exactly the same move should be made in Misére Rims. In general we move
so that the nim-sum of the spot counts is zero, except that in the misére form we must make
the nim-sum 1 if every spot count is 0 or 1.

Rails

Let us require that the loop must pass through just one or two spots, the rules otherwise being
as in Rims. What should now be our move in Fig. 17 The legitimate moves in an n-spot
region produce regions of a and b spots, where we require that a +b=n — 1 or n — 2. Since
these moves correspond exactly to the legal moves in Kayles, our moves can be deduced from
the theory of that game. For the Rails position of Fig. 1, this tells us to draw a loop through
just one of the spots in the 5-spot region, in either normal or misére play.

Many other octal games can be reformulated very nicely as spot and loop games, and we
find by observation that more people can be persuaded to play them this way. Often the
geometrical form suggests particular rules very naturally, and sometimes the rules suggested
do not quite correspond to natural games with heaps. Here are two further examples.

Loops-and-Branches

The move is to join two spots together, or join a single spot to itself so as to form a loop.
No spot may be involved in two different moves. The game is isomorphic to the octal game
73, for which we computed the nim-values in Chapter 4 (Table 6) and the reduced forms
in Chapter 13 (Extras, Table 5, Notes A and T, Adders). The patterns in Table 1 continue
indefinitely.

n 01 2 3 4 ) 6 7 8 9
nim-value 01 2 3 0 1 2 3 0 1
reduced form 012 3 242 3+2 24242 34242 2424242 34+2+2+2

Table 1. Nim-values and Reduced Forms for Loops-and-Branches.

So we have complete strategies in both normal and misére play. In both cases we move
so that the nim-sum of the nim-values is zero, except that in misere play we must make the
nim-sum one if every region has at most one spot.
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Contours

This game is rather more interesting. The move is to draw a closed loop (or contour) through
just one spot, with the side condition that every loop must have at least one spot strictly inside
(possibly internal to some further contours). In other words, when we view the position as a
system of contours drawn on a map, every hill must have its peak marked (and every valley
its bottom).

In this game, we must distinguish a region containing n spots and nothing else (type n) from
one which, in addition to n free spots, contains a contour or contours with their internal spots
(type 7). But the number or structure of the contours within a region of type # is immaterial,
and the spots inside them do not count in computing n. So Fig. 2 has five regions, of types
5.5,3, 3,2. What should be our move here?

Figure 2. A Game of Contours.

The moves available from the general position are:
norntoa+b(a>0)
it toa+b

where in each case a + b = n — 1. So we can draw up a table of nim-values, as in Table 2.

n. 0123456789 10 11 12 13 14 15 16 17 18 19 20
G(n): 0101032052 0 1 4 3 2 0 5 2 3 1
Ghr): 01231432052 3 1 4 3 2 0 5 2 3 1

Table 2. Nim-values for Contours.

We see that for n > 12 the two nim-sequences coincide and have period 8. So the starting
position with n spots is a P-position in normal play only if n is 1, 3, 5, 11, or a multiple of 8.
We have not found a complete misére analysis, but Table 3 gives the start of a genus analysis
(Chapter 13).
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123 4 5 6 7 8 9 10 11 12 13 14 15 16
genus of n 0101 0 3 2 0 5% 22 0% 1° 4¥ 3 220 ¢!
genus of 7 0 1 2 3 1 43% 3 2 0 5% 23 3% 1° 446 38 220 ¢!

Table 3. The Genus of Contours Positions.

A = 25321, B = A3A;321. For every position with all numbers < 10, the genus is correctly
computed by pretending that A+ A=B=0,C =D = 2.

In the position of Fig. 2, the nim-values are 4, 0, 3, 0, 1, and so we must make a move
changing nim-value 4 to 2. This can only be done by converting the region of type 5 into two
of types 3 and 1, so we must draw a loop surrounding the inner contour of this region and just
1 or 3 more points, at least in normal play. It turns out that we have exactly the same good
moves in misére play also.

Lucasta

This is an old game first described by Lucas, and since it does not seem previously to have had
a proper name, we have named it for him. It is quite remarkable that we can give complete
strategies for both normal and misere play from the starting position, although the general
theory is very complicated. Our strategy for normal play is easily proved when once found,
but the misére play strategy is very tricky indeed.

The move is to draw a curve having as endpoints two distinet spots. These may not be
the two endpoints of a single previously drawn curve (though they may be linked together by
a chain of curves through intermediate spots). No two curves may cross, and no spot may be
an endpoint of more than two curves, so that the curves can only build up into chains or into
closed loops which must go through three or more spots.

The loops separate the plane into connected regions, as in the previous games, but now
the situation within one of these regions needs a triple (a, b, ¢) of three numbers to describe it
adequately. Here a is the number of atoms, or isolated spots, b the number of branches joining
two otherwise isolated spots, and ¢ is the number of chains consisting of three or more spots
joined by a sequence of edges. It turns out that the number of spots in a chain is immaterial,
except that chains (3 or more spots) must be distinguished from atoms and branches (1 and
2 spots).

The possible moves are classified as follows:

aa: join two atoms to form a branch,

ab:  join an atom to a branch, making a chain,
bb:  connect two branches, forming a chain,
ac: lengthen a chain by adjoining some atom,
be: extend a chain by attaching a branch,

¢l pulla chain by joining its ends together.

Since pulling a chain divides a region into two, the result may depend on how it separates
the remaining atoms, branches and chains from each other. We denote this by (for example)
c!(a®) or c!(ab), which mean that we separate 3 atoms or an atom and a branch into a region
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of their own. It is also possible to make a move cc: joining two chains to form a longer one:
but the same effect could be achieved by sharply (c!!) pulling one of the chains, that is, with
no separation.

A Child’s Guide to Normal Lucasta

We were fortunate that the nim-values we computed for Lucasta suggested a pattern for the
outcomes of all positions with at most one chain. This pattern is displayed in Table 4 in which
the entry (a,b) is

P if (a,b,0) is a P-position, so (a,b, 1) is an N -position

+ if (a,b,1) is a P-position, so (a,b,0) is an N -position

— if (a,b,0) and (a, b, 1) are both N-positions.

Notice that the columns repeat with period 4, after the first four, while the rows alternate.

a=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b-o|]P P - + P P P - P P P - P P P -
ilp P - - - P - - - P - - - P - -
2P P - + PPP - PPP - P P P -
3l p P - - - P - - - P - - - P - -
4lP P - + PPP - PPP - P P P -
5| P P - - - P - - — P - - - P - -
6lp P - + PP P - PP P - P P P -
7lp P - - - P - - - P - - - P - -

Table 4. Lucasta with at Most One Chain.

A complete analysis may be difficult, though a machine attack will probably show that the
nim-values have period 2 in b and ¢. However we can give a strategy which enables you to win
all the positions you deserve to, when the number of chains is small. This strategy also proves
that the pattern of Table 4 persists indefinitely. It uses the special P-positions

(0,6,0), (14 4k,b,0), (3,2m,1), (4+2k,2m,0) and (0,2m,2), b,k,m > 0.

It is almost always bad to leave chains in a position because they can be pulled in a number
of different ways.

Our opponent can move from one of the special positions so as to leave two or more chains
in only a few ways. If he joins two branches to form a chain we pull it smartly; if he joins a
branch to a chain we join another. In either case the total effect is to remove two branches.
The only other case is the ab move from (3, 2m, 1) to (2,2m — 1,2) after which we join the two
atoms to get the position (0,2m,2). Our responses to positions with at most one chain are
given in Table 5. Observe that we have completely justified Table 4. The nim-values on which
we based our strategy are shown in Table 6. The entry (a,b) gives the sequence of nim-values
for ¢ = 0,1,2,...; the last pair of values always repeats indefinitely, so that 13145 abbreviates
131454545. . .. Each unprinted row in the first five columns has the same entries as that with b
decreased by 2. We have shown that all N-positions (a,b, 0) except (2,2m + 2,0) and (6,1,0),
have nim-value 1 and all A-positions (a,b, 1), except (0, 2m, 1), (1,2m+1,1) and (5,0, 1) have
nim-value at least 2.
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a=0,1.5,.. .. 1+4dkla=2 =3 a—4.6,....4+2k Ja=T7.11,.... 714k
b even: bad luck!
‘P-positions; b odd: ab gives
bad luck! aa gives  |aa gives  |(3,2m, 1) if k= 0. aa gives
¢ = (0|Hope for (0,6+1,0)|(1,b+1,0) aa gives (5+ 4k, b+ 1,0)
a blunder (24 2k, 2m +2,0)
otherwise
cl(a) b even: c! separating
round a bad luck! |c! separating all but one
¢ = 1|c!! smartly gives solitary b odd: atoms from of the atoms
(0,b,0) atom: be gives branches, from the branches:
or (1+ 4k, b,0) (1,0,0)+ |(3,2m,1) [(0,b,0) + (4 + 2k,0,0)|(1,b,0) + (6 + 4k, 0,0)
(1,b,0)
Table 5. How to Win at Lucasta.
a=10 1 2 3 4 5 6 7
b=0 01 023 13145 10201 0351732 01023245 0245713101 13169498
1 023 01 124567 13132 1464601 02518189 230645 154578Xx
2 01 023 2356745 10401 0258589 0462621t 06798 1316XTFf
3 023 01 15478967 13132 1567Xx 020101tFf
4 01 023 2376945 10401  0278549t98 046292T1Tt X=10
x=11
5 023 01 15498X67 13132 15696x6xX 0201014F T =12
t=13
6 01 023 2376X45 10401  027854Tt98 0462X2tSs F=14
f=15
7T 023 01 15498x67 13132 15696T6xSxX 5=16
s=17
8 01 023 2376X45 10401 02785489
9 023 01 15498x67 13132 15696T6xSxX

Table 6. Nim-values for Positions (a, b, ¢) in Lucasta.

The Misere Form of Lucasta

It is remarkable that we can still give a strategy for misére Lucasta from any starting position
(a,0,0). This is largely because the player who wins can do so without allowing the creation
of too many chains, for of course positions with many chains are very difficult to analyze. For
fairly small values of a, b, ¢ we can of course compute the genus, as in Table 9, given later,
which shows that the complete theory is very complicated. In fact, Table 9 was first used in
constructing our other tables and figures, and it then suggested our general strategy. This
strategy is described in Table 7, Fig. 3, Table 8 and the explanatory notes to these. In Table
7 the notation is as in Table 4, and the patterns continue.
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a=0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 13 19
h—o +—P|_p—_P—P— P—‘—PP|———P——
| —+‘P—P—P—P‘P-—+|P P P - P P P -
2 +P_—P—P—J—ﬂ———P———P——
3 P—-P—P‘;__— +‘_PPP—PPPvPPP—
4 aP—’i_P‘———P———P—— P _
5 P‘P-» ¢+l PP - PPP_PPP-P P P -
ﬁi“P.P———P———P———P———P——
7ip P - +|P PP - P PP - P PP — P P P -
slp P - |- P - — - P - = -« P - — — p — _
s|/p P - +lPp PP - P PP - P PP - P P P —

Table 7. Outcomes of some Misére Lucasta Positions.

Table 7 gives the outcome of positions of form (a,b,0) or (a,b, 1), and is the skeleton of
our strategy. Most of the rest of our discussion is concerned only with the justification of the
+ entries. First we show how the remaining entries can be deduced from these. We use three
principles.

(1) The entry (a,b) is P if and only if it is non-terminal and there is no entry of form

P in (a—2,b+1) theonly ae to (a—2,b+1,0)
+ in (a,b-2) moves from bbb to (a,b—2,1)
or + in (a—1,b—-1) (a,b,0)being ab to (a—1,0-1,1).

(2) The entry (a,b) cannot be + if there is any entry of form

P in  (a,b—2) cl(bb)  from (a,b,1) (a,b—2,0) + (0,2,0)

P in (a—1,b—1) because cl(ab) to each (a—1,6—1,0)4(1,1,0)
Por+ in (a—1,b) thereare c!(a) or ac of the (@a—1,b,0)+(1,0,0) or (a —1,b,1)
Por+ in  (a,b—1) moves  cl(b) or be  positions  (a,b—1,0) +(0,1,0) or (a,b—1,1)

and the positions (0, 2, 0), (1, 1, 0}, (1, 0, 0), (0, 1, 0) can be neglected, since they necessarily
last for exactly 0 or 2 moves.

(3) The entry (a,0) cannot be + if there is a P entry in (a — 4,1) or (a — 6,0). (For from
the position (a,0,1) we can move to (a — 2,0,0) + (2,0,0), and whatever our opponent does
to this, we can move to the sum (a — 4,1, 0) + (0,1, 0) on our next move, in which (0, 1,0) can
be neglected. We can also move to (a — 6,0,0) + (6,0, 0) and we shall show later that (6,0, 0)
can be neglected, being equivalent to 0.)

The reader should now check that all the entries in Table 7 follow from the + entries using
only these three principles, and the obvious fact that each entry is P or + or —, since (a, b, 0)
and (a, b, 1) cannot both be P.
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It is not such a routine matter to justify the + entries themselves, the main difficulty being
that our opponent might try to create two or more chains, and we cannot allow this to persist,
or the position will become too complicated for words (or pictures). The backbone of our
strategy (supporting the skeleton of Table 7) is shown in Fig. 3, which illustrates winning
strategies for the second player from each of the positions

(0,0,1), (L,1,1) = (0,2,1),(3,5,1), (3,7, 1), (3,9, 1), ...
which are all but two of the P-positions corresponding to the + entries in Table 7. We write
(1,1,1) = (0,2,1) because a single atom has exactly the same effect on the game as another
branch. For the same reason, we have systematically replaced any position (1,b,¢) which
should appear in Fig. 3 by the equivalent position (0,b+ 1,¢).

Some further remarks need to be made about Fig. 3. The positions surrounded by dou-
ble hoxes represent P-positions which will be dealt with shortly. All other P-positions are
surrounded by single boxes, and all their options also appear in the figure. Every unboxed
position on the diagram represents an A-position, for which a P-option is always given. The
symbol abeD denotes the sum of the position (a,b,¢) with another position (like (0,0,1))
which necessarily lasts an odd number of moves (usually one move), however played, while
abcE denotes the sum of (a,b,¢) with a position (like (0,2,0) or (1,1,0)) which necessarily
lasts an even number of moves (usually two). In any later analysis, we have always supposed
that these odd and even numbers were one and zere, respectively. Finally, *abe denotes the
sum of any two positions (z,y, z) and (a — z,b — y, ¢ — z). To continue the figure downwards
increase b by 2.

The two P-positions (7, 3, 1) and (11, 1, 1) corresponding to the only + entries in Table
7 not yet verified, are discussed in Table 8.

It remains to discuss the double-boxed positions of Fig. 3.

Theorem. The sum of any number of positions of the form (0, b, 0) together with a game which
necessarily lasts for exactly n moves, is a P-position if and only if:

either n is odd, and all the numbers b are 0, 1, 2, or 4

or n is even, and at least one of the numbers b is not 0, 1, 2, or 4.
Proof. The positions (0,0,0) and (0, 1,0) are ended, while (0, 2,0) lasts exactly two moves, so
all of these positions can be neglected. In fact positions (0, 4,0) can be neglected as well, since
we can always arrange that they last an even number of moves. The only line of play from
(0,4, 0) lasting an odd number of moves is

(0,4,0) to (0,2,1) to (0,1,1) to (0,1,0).

We need never make the move from (0, 2, 1) to (0, 1, 1), and if our opponent does so, we can
immediately reply with a move from (0, 1, 1) to (0, 0, 1) which makes the game last an extra
move.

Neglecting (0, 4, 0) and positions which always last an even number of moves, the only
real assertion is that a sum of positions (0,5,0), with each b either = 3 or > 5, is a P-
position. The only move from (0,5,0) is to (0,b — 2,1) from which we can move to any
position (0, z,0) 4+ (0, y,0) with 2 +y = b— 2. However our opponent moves, we can use this to
restore the position to another one covered by the theorem, unless it is just the single position
(0,3,0), from which our opponent can only move to (0,1,1), and we then move to (0,0,1),
leaving him to make the last (losing) move.
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\D\




594 Chapter 17. Spots and Sprouts &

The Positions (7, 3, 1) and (11, 1, 1)

In Table 8, to each option of either of these positions, we give a response, which is in every case
expressed as the sum of a P-position from Table 7 and some position which can be verified to
be equivalent to 0 from Fig. 4. In fact the + entries in Table 7 corresponding to (7,3,1) and
(11,1,1) are not needed to verify any other entry, and so are not used in our strategy from
any initial position, so that Table 8 is not really necessary for the strategy.

The options of (7, 3, 1) have good replies The options of (11, 1, 1) have good replies

aa (5,4,1) (5,2,0) + (0,2,0) (9,2,1) (9,0,0) + (0,2,0)
ab (6,2,2) (3,2,0) + (3,0,1) (10,0,2) (7,0,0) + (3,0,1)
bb (7,1,2) (1,1,1) + (6,0,0)

ac (6,3,1) (5,3,0) + (1,0,0) (10,1,1) (9,1,0) + (1,0,0)
be (7,2,1) (7,0,0) + (0,2,0) (11,0,1) (7,0,0) + (4,0,0)

The other options are all sums of two positions (a, b, 0), and in every case we move in the
region which has just 2, 3, 6, 7, 10, or 11 atoms, and join two of these atoms together.

Table 8. (7, 3, 1) and (11, 1, 1) are P-positions.

It is interesting to note that the positions

000,010 = 100, 020 = 110,040 = 130,
400, 420, 510, 600, 800,
301,022 = 112,002, 004, 006, ...

are equivalent to 0 in the misére sense. (This remark can be useful in play from more com-
plicated positions than those which need arise if our strategy is followed.) To prove that a
position is misere-equivalent to 0 it is necessary and sufficient to show, first, that it is an
N-position and second, that each of its options has itself an option misére-equivalent to 0.
This is done for the above positions in Fig. 4, in which the subscript

P denotes a P-position
N denotes an A-position not misére-equivalent to 0
O denotes an N -position misére-equivalent to 0.

In a strategically fought game of Misére Lucasta, we find three phases. In the first phase, both
players join pairs of atoms together to form branches. If either player dares to form a chain,
his opponent can certainly win by closing the chain around some small number of atoms and
branches (which can be neglected), and converting the rest of the position to a P-position.
When the number of atoms is reduced to just above three, the winner is the player able to
convert the position to (3,2n + 1,1), and the game enters its second phase, in which play
follows the lines of Fig. 3. The third phase is reached when the position becomes a sum of
positions (0,b,0) in which only branches (with isolated atoms) remain, together possibly with
some rather trivial game. From then on, the winner always restores the position to a similar
form, except that near the end of the game he is careful to restore the position (0,3,0) to a
single chain (0,0,1).
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a=>0 a=1 a=2

c=0 12 34 56 78 |0 1 2 34 56 T8 DT 23 4 586

=00 1 0 10 10 L0 0 2 3 23 23 23 1 3 L p pbb
110 2 3 23 23 23 010 aa, aa, aa |1 2 4 g r §3
2101 0 aa,ae, aa |2,2 3 be dd, dd, |t u v 69

3(2.2 3 be dd dd, |0 e f gh ij kk |1 w 4%

410 e f gh ij ki |21 3% K 3% 5'®
502,14 3% ¢, 17 0% 11 5+

6 |e, 1302 1, 2 2t 30l
T2t L 12

8|0 17 0° 21

9 | Qv 0°

10 | 0°

Table 9. The Genus of Lucasta Positions.

genus  name  structure genus namc  structure
4343 g4 2,320 0*3 A4 pa3,2l
22020 b a2 30 12020 B Ap,pa 2,30
3oest e haa? 2 0*'*? C  BA,p,p pa3;2l
21320 d  cbaae23 15313 D p2 4320
PP e 220 3464 g DAgp b2, 2,421
01792 ea2,,321 {1313 F 23=2_,
14312 g  Jeba2 52,30 12020 H  F.30
05202 h gf ecba2 | ;3,1 20313 I HO

14313 i hg, fe, deba 2, ,2,0 1ra Jooou2.3

03202 i ihygf ed debal .31 214 K ue2,

13313 ko jihg, fedddebaa? 2,0 ghaez 2,.e 0. F_
guzoe 4, Oy,0,0,0

22020 1T g2 30

g6 5 2.33)

53797 g pa3,43210

GhHeh Foygp,pa,a2,5320

s 5 g PaD Py, a3,4321

21420 4 3

P, 2,210

55787 & ui,pa2, 43210

52097 w o yte2,,2,4310
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a=23 a=4 |a=35 a=6|7 g8 9
¢ = 0123456 01 01 0 110 0 0
b=0 |102ABCC, |03 F.H |02 |1 0o o
1 |F3DE 14* |0 I 1
2 |1 0 o°
3|7

Note:Ifc = 2b+2a, then (g, b, ¢) has value x,, where (a, b, c —1) has value x.

To save space in Table 9 the abbreviating conventions are net the same as those of Chap-
ter 13 (see Volume 2 of Winning Ways). In the table

...

*
g means g% -TYTY where y=ax+2

and no assertions about tameness or restiveness are intended. In the notes opposite, the
genus is given to four superscripts even when the period starts earlier, and now the last two
superscripts repeat indefinitely.

Cabbages; or Bugs, Caterpillars and Cocoons

If we modify Lucasta by allowing the move which completes a closed loop passing through
only two spots and consisting of two curves joining them, we get a simpler game. Here, we
call the isolated spots bugs, chains of two or more spots caterpillars, and closed loops cocoons.
The cocoons separate the plane into regions, so that the general position is a sum of positions
(b, ¢), where these numbers specify the numbers of bugs and caterpillars per region.

It turns out that the position (b, ¢) in this game behaves just like the position (0,b,¢) in
Lucasta, so we have the analysis already. (Using our nim-value table for Lucasta we can in
fact analyze arbitrary positions in normal play.) In particular, we have:

The initial position (n,0) is a P-position in normal play for all n,
and in misere play for all n except 0, 1, 2, 4.

Jocasta

We obtain an even simpler game by allowing in addition the move which joins an isolated spot
to itself to form a closed loop passing only through that spot.
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Sprouts

This game (introduced by M. S. Paterson and J. H. Conway some time ago) has a novel feature
which complicates the analysis to such an extent that the normal outcome of the 7-spot game
remained unknown until 1999. Even the 2-spot game is remarkably complicated.

The move in Sprouts is to join two spots, or a single spot to itself (Fig. 5) by a curve which
does not meet any previously drawn curve or spot. But when this curve is drawn, a new spot
must be placed upon it. No spot may have more than three parts of curves ending at it.

Figure 5. A Short Game of Sprouts.

A typical game is shown in Fig. 5, with the second player’s moves drawn as dotted lines.
Since the new spots can still be used in later moves, a Sprouts game will last longer than a
Cabbages game from the same initial position, and it is perhaps not even obvious that it need
ever end. But there is a simple argument which shows that in fact a Sprouts game starting
from n spots can last at most 3n —1 moves. We take the 3-spot game as an example. Each spot
has potentially 3 ends of curves available to it, which we shall call its three lives, so initially
the 3-spot game has 9 lives. But each move takes one life away from the two spots it joins
(or two lives away from a spot joined to itself), and adds a new spot which has just one life.
Therefore each move reduces the total number of lives by one. Since the very last spot to be
created is still alive at the end of the game, the total humber of moves is at most 9 — 1 = 8.
But Fig. 6 shows just how complicated even the 2-spot game really is.

One of the most interesting theorems about Sprouts (due to D. Mollison and .J.H. Conway)
is the Fundamental Theorem of Zeroth Order Moribundity (FTOZOM). We shall not prove it
here, but will at least state it. The FTOZOM asserts that the n-spot Sprouts game must last
at least 2n moves, and that if it lasts exactly this amount, the final configuration is made up
of the insects shown in Fig. 7.
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DS

Louse Beetle Cockroach Earwig Scorpion

Figure 7. The Five Fundamental Insects.

To be more precise, the final configuration must consist of just one of these insects (which
might perhaps be turned inside out in some way) infected by an arbitrarily large number of lice
(some of which might infect others). One of the possible configurations is shown as Fig. 8—it
consists of an inside-out scorpion inside an inside-out louse, liberally infested with other lice!

Figure 8. The Lousy End of a Short Sprouts Game.

How should we play if we wish to win a Sprouts game? It is clear that whether the play
is normal or miseére, the outcome only depends on whether the total number of moves in the
game is odd or even, so in some sense winning is controlling the number of moves. Now the
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3-spot game necessarily lasts for 6, 7, or 8 moves, and it is very difficult to make it last 8
moves, so that really the fight is between 6 and 7 moves. Apparently the same thing happens
in larger games—essentially one player tries to make the game last m moves, while the other
tries to drag it out to m + 1, all other numbers being very unlikely.

To see how to control the number of moves, we examine the situation at the end of the
game, which we suppose to have started with n spots and lasted for m moves. The final
number of spots is n + m, and the total life at the end of the game is I = 3n — m, since we
started with 3n lives, and subtracted one per move. Each of the live spots at the end of the
game has two dead spots as its two nearest neighbors, and the remaining dead spots are called
Pharisees. (The concept of neighbor is quite subtle—in Fig. 9 we show the two different ways
in which two dead spots can be neighbors of a live one.)

T D L 5 D

Figure 9. Two Live Spots (L) and Their Dead Neighbors (D).

Now no dead spot can be a neighbor of two different live spots , for otherwise we could join
these two spots and continue the game. So the number ¢ of Pharisees is given by the equation

d=m+m)—(1+20)=(n+m)—33n—m)=4m—8n
and we have the Moribundity Equation:
1,
m = 2n 4+ —¢.
449
From this equation we can deduce several things:

(i) The number of moves is at least 2n.
(ii) The number of Pharisees is a multiple of 4.

(iii) If at any time in the game we can ensure that the final position has at least P Pharisees,
1
then the game will last at least 2n + ZP moves.
There is a corresponding result to (iii) in the opposite direction:

(iv) If at any time in the game we can ensure that the final position has at least [ live spots,
then the game will last at most 3n — I moves.

So, according to our previous ideas, one player will try to lengthen the game by producing
Pharisees, while his opponent tries to shorten it by producing spots which must remain alive.
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B

Figure 10. A Sprouts Position with One Pharisee.

There is a useful way to estimate the number of live spots there will be at the end of the
game. If any region defined by curves of the game has a live spot strictly inside, then there will
be a live spot inside that region at all later times. So in Fig. 10 we can regard, if we like, the
plane as divided into four regions A, B, C, D, and the regions A and B each have live spots
strictly inside. Any move made in either of these regions creates a new live spot, and so each
of A and B will contain a live spot at the end of the game. We cannot say the same of C' and
D, whose only live spots lie on their borders, but if we regard C' and D together as forming
a single region, then this new region has just one spot strictly inside. So we can see that the
game will have at least 3 live spots in its final position. It also has presently one Pharisee P,
and so (since it developed from an initial position with n = 4 spots) we can see that it will
last at most 3n — 3 = 9 moves, and at least 2n + i= 8% moves. Since it is difficult to see how
the game could last for exactly 8% moves, we conclude that the total length of the game will
be 9 moves, however it is played from now on! (Actually, 6 moves have already been made, so
just 3 more moves are to follow.) Accordingly, this is either a normal play game about to be
won by the first player, or a misére play one heing won by the second player.

Using computers, Applegate, Jacobson and Sleator have extended our results considerably.
They make the rather slender conjecture that Sprouts is a first player win just if the initial
number of dots is = 3, 4 or 5 (mod 6). They have verified this for n < 12. The corresponding
misére Sprouts conjecture is that the first player has a win just if n = 0 or 1 (mod 5). This
they verified for n < 10.

no. of spots: 0 1 2 3 4 5 6 T8 9 10 11
normal play: 0P 2P 4P TN 9N 1IN 14P P P N N N
misere play: 0N 2N 5P 7P 9P N N r P P

Table 10. Outcomes of the Smallest Sprouts Games.
The fact that 6-spot normal Sprouts is a P-position was first proved (to win a bet) by

Denis Mollison, whose analysis of the game ran to 47 pages! Using the ideas above, we can
shorten this considerably, but 5-spot Sprouts with misére play still seems to need a computer.
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Brussels Sprouts

Here is another game, which should be more interesting than Sprouts. We start with a number
of crosses, instead of spots. The move is to continue one arm of a cross by some curve which
ends at another arm of the same or a different cross, and then to add a new cross-bar at some
point along this curve. A 2-cross game of Brussels Sprouts is shown as Fig. 11. After playing
a few games of Brussels Sprouts, the skillful reader will be able to suggest a good starting

0043
elelel

Figure 11. A 2-cross Game of Brussels Sprouts.

Stars-and-Stripes

+ + A
* * g
(a) (b)

Figure 12. A Game of Stars-and-Stripes.
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Suppose we make addition of the cross-bar optional in Brussels Sprouts. It is natural at
the same time to allow “stars” with any number of arms instead of just crosses with exactly
4 arms, and to call the cross-bar a stripe. An initial position (5, 5, 4, 4, 3) is shown in Fig.
12(a), along with a position 3 moves later (Fig. 12(b)). In the analysis, the game becomes a
disjunctive sum of regions, and we can pretend that each region contains only stars. In general,
a connected portion of the picture which has just n arms sticking into the region concerned
counts as an n-arm star inside the region. (Even the boundary of the region counts as a star.)
In Fig. 12(b) we have therefore labelled each region with numbers showing the sizes of the
stars in that region.

The one-star game is isomorphic to the octal game 4:07, since a move with cross-bar
essentially splits an n-arm star into two stars of sizes a and b, with a+b = n, a, b # 0, and the
move without crossbar splits it into stars of sizes ¢ and b with a + b = n — 2. The nim-values
for this game (Chapter 4, Tables 7(a), 6(b)) are 0.0123 and the genus appears in Table 11.

n

2 3 5 6 T 8 9 10 11
genus of n 1

0 1 4
0 0 2 03 0 I8 2 3jL 030 18 g0
a = 2232[] b= a1a2220 c= blba;;m?z?() d= cbzbaza1a333

Table 11. The Genus of Stars-and-Stripes Positions.

Bushenhack

Bushenhack is another pencil and paper game. It's played with a number of rooted trees, but
now when you chop an edge, all edges connecting it to the ground disappear, leaving a number
of floating bits of tree to be rerooted as in Fig. 13. Its theory involves yet another property of

AR AN
Y

r

(YY 177

Figure 13. A Bushenhack Move.
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Genetic Codes for Nim

If you tell me that you're in a Nim-position of some nim-value (e.g. 9) and can move to posi-
tions having exactly so many (e.g. 13) other nim-values, I can tell you exactly what (in this
case 0, 1,2, 3,4,5,6,7, 8, 12, 13, 14, 15) those values are!

To see why, we enlarge upon a notation from the Extras to Chapter 7, in which the single
Nim-heaps are

Ogy,Ly11, 202,31, 301,231, 4{4,5,6,71, D{1.456,7}r - - - »
and in general nj, where [n], the variation set, is the set of changes in nim-value that are
possible in one move. The variation set [n] for an arbitrary Nim-heap consists of all numbers

whose leftmost binary digit 1 is present in the binary expansion of n, and so it can be found
as the union of the appropriate selection of

1] ={1}, [2]={2.3}, [4]={4,5.6,7}, [8]={8,9,...,15},

E.g., since 13 =144+ 8, [13] = {1,4,5,6,7,8,9,...,15}.

We'll say that a position has genetic code A if it has the same variation set as the Nim-
heap of size A. Arbitrary Nim-positions have genetic codes, because when you add positions
you unite their variation sets; e.g., 5 4+ 12 has genetic code 13, because

5+ 12 =504567 +12a56,75809,..15} = H1,45,6,7.89,...,15} = 13,

and the options of 93 can be found by nim-adding 9 to the members of the variation set [13].

Figure 14. What’s the Winning Move? Figure 15. Calculating the Value and the Code.
(See the Extras.)
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Bushenhack Positions Have Genetic Codes!

In Fig. 14 the symbol a4 against any edge gives the value and genetic code for the subtree
whose trunk is that edge, while at every node where there are several branches we've given
this information for the sum of the corresponding subtrees. (An isolated digit a means af,.)
The numbers are calculated as in Fig. 15 where X is the number whose binary expansion has
a 1 wherever there is a 1 in any of A, B, C, so that

[X] = [A]U[BU[C]

and Y is the smallest number greater than a 4 b1 ¢ that is divisible by exactly that power
of 2 which divides X + 1.
Suppose that X has binary expansion

7770111 ... 1 (endingink 1's).
Then that of a -T- b -T- ¢ will have the form
.pqgqrO0tuwv ... z

We already know why these numbers are the code and value for the sum of the three subtrees
above @@ in Fig. 15. So we need only show that

X441 =...772721000 ... 0

and
Y =...pgr1000 ...0

are the code and value for the subtree with trunk P@. The options for this tree have nim-values
atbte (chop PQ) and atvtela

for any number A whose first digit 1 is present in X. In particular, we can move to all nim-

values that are < a b £ ¢ or differ from it only in the last k places. So we can move to all

numbers smaller than ¥, which differs from a Tb¥ecin the (k + 1)st place from the right,

corresponding to the rightmost zero in X. The nim-values of the options are exactly those

binary numbers whose leftmost difference from Y corresponds to a digit 1 in X + 1, which is
therefore the genetic code.

Von Neumann Hackenbush

When played on trees, von Neumann Hackenbush is an exactly equivalent game in which the
move is to delete a node together with all nodes on the path connecting it to the ground and
all edges meeting these. To convert to Bushenhack just add a new trunk to every tree. Von
Neumann proved, by a strategy-stealing argument, that a single tree was always an A-position,
and Ulehla gave an explicit strategy for trees, which prompted our own discussion.

Bushenhack is really just the theory of A + B and A:*, whereas ordinary Hackenbush is
concerned with A + B and #:8. The most general version of von Neumann Hackenbush is
played on any directed graph (remove a node and all nodes it points to). Its analysis involves
the properties of A + B and A:B for arbitrary variation sets (Extras to Chapter 7).




Extras

The Joke in Jocasta

The Joke in Jocasta is that the n-spot game always lasts for n moves, because each spot has
two lives and each move uses two. The game is therefore just another form of She-Loves-Me,
She-Loves-Me-Not.

The Worm in Brussels Sprouts

The Worm in Brussels Sprouts is similar but more subtle. The n-cross game always lasts for
just 5n — 2 moves, but Brussels Sprouts is definitely more interesting on surfaces of higher
genus, e.g. the torus.

Bushenhack
The winning move in Fig. 14 is that shown in Fig. 13.
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The Emperor and His Money

For good ye are and bad, and like to coins,
Some true, some light, but every one of you
Stamp’d with the image of the King.
Alfred, Lord Tennyson, The Idylls of the King, The Holy Grail, 1.25.

Figure 1. The Emperor’s Declaration.

... Emperor Nu took power by overthrowing the divisive My-Nus dynasty. The Nu régime introduced
many positive reforms, and in particular abolished the old {An-Tsient) irrational currency, which had
his predecessor’s head on it, and introduced the Nu system. The masters of the Imperial Mint, Hi and
Lo, were alternately to decide the value of each new denomination, and after each decision, sufficiently
many coins of this value were to be struck. All went well until Hi ordered the striking of a coin of
value one, so throwing the Workers of the Mint into unemployment. They rose in a body, and threw
the unfortunate Hi from the tower at the quiet end of the capital, which has been known as the Hi
Tower ever since.”

My-Nus—Some Divisive Times.

609
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Sylver Coinage

Had Hi and Lo read this book, they would have realized they were only playing a game, the
game of Sylver Coinage. In this the players alternately name different numbers, but are not
allowed to name any number that is a sum of previously named ones. So, if 3 and 5 have been
named, for example, neither of the players is allowed to play any of the numbers

3, 5 6=3+3, 8=3+5  9=3+3+3, 10=5+5 11 =3+3+5,

When will this game end? If neither player has played 1, 1 will still be playable. But, of
course, as soon as 1 has been played, every number
1, 2=1+1, 3=1+1+1, 4=1+141+1, 5=14+1+141+1,
is illegal, and so the game ends. Because the player who names 1 is declared the loser, Sylver
Coinage is a misére game. (Skillful players won't spend much time on the normal play version!).

We had better point out that because the old currency had been rather irrational (with
coins of value v/2, e and 7) the Emperor declared that there was to be a new monetary unit,
the You-Nit, and the value of each coin was to be an integral number of You-Nits. (You can
see the Emperor making this declaration in Fig. 1!).

And recalling how people were nonplussed by the great financial scandal of the My-Nus
dynasty when they had to take away Teh Kah-Weh for issuing currency of negative value,
Emperor Nu decided that each coin’s value must be a positive number of You-Nits.

How Long Will It Last?
It might take quite a long time. To see that it can last for a thousand moves, we need only
consider the game 1000,999, 998, ..., 4,3,2, 1.

And of course a thousand can be replaced by any other number, so that the game is un-
bounded. Many other games have this property, for example Green Hackenbush (Chapter 2)
played with an infinite snake, but are boundedly unbounded because after some fixed number
of moves the end will be in sight. Thus after the first move in the Hackenbush game only a
finite amount of snake is left.

But Sylver Coinage is not like that! No matter what number you choose. Hi and Lo can
find a way to play that number of moves so that what’s left of the game will still be unbounded.
Their first thousand moves might be

91000 099 5998 o4 93 92 9l
and the rest of the game can still last as long as you like:
1000001, 999999, 999997, ...,7,5,3, 1.

In other words Sylver Coinage is unboundedly unbounded. And this isn't all. It's unboundedly
unboundedly unbounded and unboundedly like that, and so (unboundedly) on!

Nevertheless, it can’t go on for ever; in the language of Chapter 11 it's an ender. It is
because the little theorem which proves this is due to the famous mathematician J.J. Sylvester
that we have called the game Sylver Coinage.
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For, at any time after the first move, let g be the greatest common divisor (g.c.d.) of
the moves made. Then it's not hard to see that only finitely many multiples of g are not
expressible as sums of numbers already played. So after at most this known number of moves
the g.c.d. must be reduced. Eventually we must arrive at a position with g = 1 and can bound
the number of moves yet to be made. So although we may not be able to bound the game
after any given number of moves, we can bound the number of moves it will take to reduce
the g.c.d.

Some Openings Are Bad

The proof we gave in the Extras to Chapter 2 shows that from any position in Sylver Coinage
there is a winning strategy for one of the two players but because of the infinite nature of the
game we cannot work through all positions and guarantee to find winning strategies when they
exist. In fact we do not know of (and there may not exist) any way of working out in a finite
time who wins from an arbitrarily given position. But we do know the answers for some easy
positions.

If at any time you name 1, you lose by definition.

If you name 2, my reply will he 3 if it’s still available, and then all larger numbers

4=2+42 5=2+43, 6=24+2+2 T=2+4+2+43, 8=2+4+2+4+2+2,
are excluded and you will be forced to name 1.

If you name 3, then for the same reason, 2 is a good reply.

So whoever first names any of 1, 2 and 3 will lose. In particular the first three numbers are
bad opening moves. What will you reply if I open with 47 Maybe 57 If so the g.c.d. becomes
1 and there will be only finitely many numbers left. We can find out which by arranging the
numbers as in Fig. 2. The circled numbers are excluded because they're multiples of 5 and
these exclude the lower numbers by adding 4’s. So only 1, 2, 3, 6, 7, 11 remain.

Figure 2. What's Left after {4, 5}.

I won't take 1, 2 or 3. If I say 6 or 7, you'll say the other, since these dismiss 11 and leave
only 1, 2, 3 for me. So I'll say 11 and make you say 6 or 7 instead.

{4, 5, 11} is a P-position.
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Here’s what happens after 4 and 6.

0y 1 2 3
EERONN;
%9 M0 11
12 13 M4 15
M 17 X 19

Since 5 and 7 exclude all large numbers, they kill each other. Similarly for 9 and 11, and for
13 and 15, and so on.

After {4,6} the pairs
(2,3),(5,7),(9,11),..., (4k + 1, 4k + 3),
for k > 1, are mates.

So if you open with 4, I shall respond with 6; if you open with 6, I shall respond with 4.
A few similar strategies are known.

After {8,12} the pairs
(2,3),(5,7),(9,11),..., (4k + 1, 4k + 3)
and
(4,6), (10, 14), (18,22), ..., (8k + 2, 8k + 6),
for k > 1, are mates.

There is a slightly more complicated strategy showing that another good reply to 6 is 9.

After {6,9} mate the pairs
(4,11), (5,8), (7,10) and (3k + 1, 3k + 2) for
k>4,
but then
after 4,11 mate 5 with 7
after 5.8 mate 4 with 7
after 7,10 mate 4 with 5, 8 with 11.
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We have proved that

{2,3} {4.6} {6.9} {8.12}

are all P-positions,

and so

{1} {2} {3} {4} {6} {8} {9} {12}

are all N-positions.

The numbers 1,2,3,4,6,8,9 and 12 are the only first moves for which explicit strategies have
been found. You might expect that pairs (2,3), (4dk+ 1, 4k +3), (4,6), (8k + 2, 8k +6), (8, 12),
(16k + 4, 16k + 12) provide a strategy after {16,24} but unfortunately 12 is not a legal move
from the position {16, 24, 5, 7, 8}. On the other hand, for the strategies given above, both
members of a pair are legal whenever one is. In fact 8 is a good reply to {16,24,5,7} because
it makes 16 and 24 irrelevant and we shall soon see that

{5,7.8} is a P-position.

We don’t know whether 24 is a good reply to 16, nor even whether 16 has any good reply.

Are All Openings Bad?

If on observing the fate of 1, 2 and 3 you thought maybe that all openings were bad, then
probably our discussions of 4, 6, 8, 9 and 12 have tended to confirm your suspicions. In this
section we'll try to analyze 5 and 7. The discussion of possible replies is made a lot easier by
the clique technique.

You've already seen some cliques: The number 1 forms a rather special clique all by itself;
2 and 3 form another because they exclude all larger numbers. In our discussion of {4,5}, 6
and 7 formed a clique since they excluded 11. Cliques have the property that any reply to a
clique member must also be a clique member and these two numbers must together exclude
all numbers outside the clique.

We illustrate the clique technique by discussing {6,7} (Fig. 3).

As usual, we can disregard 1, 2 and 3 which form the innermost cliques in every position. Now
in Fig. 3, 4 and 5 together exclude all larger numbers and so form a third clique. No matter
what larger numbers have been named, 4 will answer 5 and 5 will answer 4. We can therefore
afford to neglect them in discussing larger numbers.

Now we assert that 8, 9, 10 and 11 form the next clique, because 8 and 10 together exclude
all but 9 and 11, and these together exclude all but 8 and 10. Even when some larger numbers
have already been named, 8 will answer 10, 9 will answer 11, and vice versa, and we can
dismiss all four from the subsequent discussion.
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_(43)

L (810)(9.11)
_(15,23)(17,22) 16! |
297

Figure 3. The Cliques after (6, 7).

We now know that any good reply to any of the remaining numbers

15 16 17
22 23
29

must be another of these. We see that 15 answers 23 and vice versa since these leave only 16
and 17. Similarly 17 and 22 are mates. But since 16 excludes both 22 and 23, leaving only
15 and 17, it’s a good move by itself. These five numbers form a clique, since 29 is always
excluded.

16 is the unique
good reply to {6,7}.

Table 6 in the Extras exhibits complete strategies in a similar way for all the positions

(45}, 47, {49},
(56}, (57h (58}, {59)
{6,7}, {7,8}, {7,9}.

In particular it shows that

{4511}, {4,713}, {4,919},
{5,6,19}, {578}, {5,9.31},
{6,7,16}, {7,9,19}, {7,9,24},

are P-positions.

We deduce that any good reply to 5 or 7 must be at least a two-digit number. The smallest
two digit number, 10, isn’t a legal answer to 5; is it a good answer to 77 No!

{7,10,12} is a P-position.
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This is proved by Fig. 4. Since the clique technique isn’t as helpful as it might have been,
we've added extra notes for three of the pairs.

0y 2 3,4 5 6 ()
o oy 2.3)
g 9 (10 11 (12 13 L&)
= 496869
15 16 18| (@) (11,16)  followed by (49) (513) (6,15) (8.13)
P (13.15)  followed by {4.9) (5.8) (6.9) (8,11)] (16,18)
03} 23 25 \ .
22 (13.18)  followed by (4.9) (5.8) (6.9) (8.11)] (15,16)
Ay Fim
30) \@. (23,25)

Figure 4. The Position {7, 10, 12}.

Not All Openings Are Bad

R. L. Hutchings has proved that there can’t be any good replies to 5 or 7! His main theorem is

and {a,b} # {2,3}, then {a,b}
is an N -position.

From this he deduces his p-theorem:

If p = 5 is a prime number,
{p} is a P-position,

p-positions are P-positions

(for any legal reply produces a position with a g.c.d. of 1.) And from the p-theorem he deduces
in turn his n-theorem:

If n is a composite number
not of the form 23%, then
{n} is an N-position,

.y ~ “ .
n-positions are N-positions

(since n has a prime divisor p > 5, which is a good reply.) Together these account for the first
few missing numbers:
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{5}, {7}, {11}, {13}, {17},... are P-positions.
{10}, {14}, {15}, {20}, {21},... are N-positions.

Our explicit strategies accounted for the eight smallest numbers 2%3°:

{1}, {2}, {3}, {4}, {6}, {8}, {9}, {12}

are N -positions.

But

Nobody knows about

(16}, {18}, {24}, {27}, {32}, {36}, ...!

(We’d be glad to be proved wrong.)

Strategy Stealing

Hutchings proves his main theorem by a fine piece of strategy stealing. He considers the top-
most number, ¢, that is not excluded by {a,b} and proves that if ¢ is not a good reply, then
some other number is!

We shall call {a, b} an end-position because, as we'll see in a moment, the topmost number
is excluded by every other legal move.

Now let's ask:

Is ¢t a good reply to {a,b}?

If the answer is “yes”, then {a, b} is an N -position.

If the answer is “no”, then either the game is over or there is a good reply s to {a,b,t}. But
since a, b and s exclude ¢, s is itself a good reply to {a,b}. We can say that the player to move
from {a, b} finds his strategy by stealing the second player’s strategy, if he has one, for {a, b, t}.

In some cases, e.g. {5.9}, ¢t (here 31) is a good reply. But in others, e.g. {5,7} (where
t = 23) it isn't. The strategy stealing argument only tells us that good moves exist, not what
they are. Theft is no substitute for honest toil!

In general,

An end position with t > 1
is an N-position,

end-positions are A/-positions.
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But the end-position {2,3} is not an A'-position. This is because ¢ = 1 and the only legal move
ends the whole game.

Why is {a, b} an end-position if its g.c.d. is 1? In Fig. 5 we illustrate with {9,11} for which
the authors once knew no good reply (but see Table 5).

(o) 1 2 3 4 5 6 7 8
-
10 1) 12 13 14 15 16 17

o
19 21 (02 23 24 25 26
\.
28 3{})=s 32 (33 34 35
37 39 41 43 @

46 48 50 52

)
(55 5?)‘ 59 61

66) 68 70
ol \\

= T _

77 79 =t = 30+3a+2b
o
88

Figure 5. Hutchings’s Theorem for a = 9, b = 11.

Writing the numbers in a columns, as is our wont, we see that in each column the first
ezcluded (circled) number is a multiple of b, so the last included numbers must differ by
multiples of b. Now from any legal move s we can get to the last legal number in its column by
adding a’s and from this we can get to ¢ by adding b’s showing that s excludes ¢ (e.g. s = 30
in Fig. 5). The argument also provides a proof of Sylvester’s well-known formula.

t=(a—1)b—a=ab— (a+b).

Quiet Ends

Suppose Hi and Lo have named two coprime numbers a and b and Hi is considering making
the move s. Then we know that the topmost number ¢ will be obtainable using sufficiently
many coins of values s, @ and b. But our argument proved that only ene copy of the new coin
will be needed:

t = s+ ma + nb.

More generally from a position {a,b,c,...} we shall say that s quietly excludes t if  can be
made up using any numbers of a, b, ¢, ... together with just one copy of s:

t=ma-+nb+...+ s.

A quiet end-position is one in which the topmost legal move is quietly excluded by every
number not already excluded.
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Thus
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If a is coprime with each of
b and b;, then
S = {a,be, bd, be, ...}
is a quiet end-position
if and only if
Sl = {O._, b]_(f._. bld, blﬂ, - } is.

THE QUIET END THEOREM

{7,1x 3,1 x4},

which is really the same position as {3,4}, is a quiet end-position , so that

and

{7,9,12} = {7,3 x 3,3 x 4}

{7.15,20} = {7,5 x 3,5 x 4}

are. In particular, these are end-positions and so are N-positions by the strategy stealing
argument. As usual we aren’t told what the good replies are.

We shall use {7,9,12} and {7,15,20} to illustrate our proof of the quiet end theorem. Once
again we write out the numbers in @ (here 7) columns and circle the first excluded number in
every column (Fig. 6). We assert that these numbers for the positions S and S are in the
proportion b:b; (3:5 in the example; see Fig. 7).

© 1 2 3 4 5 6 © 1 2 3 4 5
g8 9 10 11 12
8 (910 11 (2 13 3 16 17 i8 19
23 24 25 26
15 17 @8 2 3 »n 2 3
2 @ N 33\ 39 @)
27 @s 46
29 53
% @

(a) S = {7.9,12}.

Figure 6. Circled Numbers in Proportion.

(b) S, = {7,15,20}.
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in the
29 2 17 11 5 20 proportion

S 0HODBD® 3

to
53 8 33 23 13 38
s (060 (3@ 60 @@ s

Figure 7. The Circled Numbers Sorted.

We first see that the circled numbers for S really are multiples of b. Recall that we circle
n for S if n is excluded by S, but n — a is not. Since n is excluded, it has the form

n = ak +bm

where m would be excluded by {c,d,e,...}. But if k were positive,
n—a=alk—-1)+bm

would also be excluded by S, so & = (0 and we have simply

n = bm.
Now our assertion is that bm is circled for S only if bym is circled for S;. Now bym is certainly
excluded by S1 and so is circled unless

bym —a

is also excluded. But then we must have

bim —a = ak + bym'

for some m’ excluded by {c,d,¢,...}, and
bym = a(k + 1) + bym’,
showing that b, divides k+ 1 since it is coprime with a. We can now divide by b; and multiply
by b to obtain
bm = ak’ 4+ bm’
for some positive number k', showing that
bm —a = a(k’ — 1) 4+ bm'

was excluded, and bm was not circled for S.
In its modest way, the quiet end theorem is quite powerful. It often gives the quietus to
infinitely many replies with a single blow.

No odd number is a
good reply to {16,24}.
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For 1 clearly isn't and if a is any other odd number then {a,2,3} is really the same as the
quiet end position {2,3}. By the quiet end theorem {a, 16,24} is a quiet end-position and so
an N -position.
In a similar way it proves that {4,6} and {6,9} are P-positions without bothering to provide
a detailed strategy. Let’s use it to discuss the position {8,10}. After {4,5} we found that the
only remaining moves were
1, 2, 3, 6 7, 11,

so after {8,10} the only remaining even numbers will be twice these,
2, 4, 6, 12, 14 22

The quiet end theorem enables us to say that any good reply to {8,10} must be in one of
these two sets, for otherwise it is an odd number a excluded by {4,5} so {a, 4,5} and therefore
{a, 8,10} will be quiet end-positions. Now,

1 loses instantly,

2,3) are mated as usual,

4.6) eliminate 8,10 and will mate, as will
7,11) (see {6,7} in Table 6 in the Extras) and
12,14) by our strategy for {8,12}.

So 22 is the only hope for a good reply to {8,10}. We shall see later that

{8,10,22} is a P-position.

Doubling and Tripling?

Note that the P-position {8,10,22} is the double of {4,5,11}. Our {8,12} strategy shows that
all P-positions arising in the {4,6} strategy have doubles that are also P-positions. Maybe
every P-position doubles to another? No! For {5,6,19} is P, but {10,12,38} is answered by 7
since {10,12,38,7} is really the same as {7,10,12}.

Maybe the triple of every P-position is another? No! This time {4,5,11} is P, but {12,15,33}
is answered by 5 since {5,12,33} is a P-position, as we'll soon see.

Halving and Thirding?

Nevertheless there are many P-positions whose doubles and triples are still P. We conjecture:

Jf {2a,2b,2¢,...} is P and It {3a,3b,3¢c,...}is P
sois {a,b,c,...}? sois {a,b,e,...}7
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Finding the Right Combinations

How should you start a game of Sylver Coinage? Now that you know so much you will per-
haps name 5 for your first move. You now have a strategy for every move I might make and
probably feel a little safe. But those stolen strategies are firmly locked inside that little safe
you're feeling and more than sensitive fingers are needed to find the right combinations.

You know the first few: 1 needs no reply and you should make the pairs (2,3), (4,11),
(6,19), (7,8) and (9,31). Is there any general rule? In trying to answer this question for you
we went to a lot of trouble and eventually found a fairly efficient way of breaking open the
safe. But the winning combinations it reveals (Fig. 8) suggest that there is no simple answer.

Figure 8. The Stolen Secrets of Safe Number 5.

Let’s take a closer look at a position in which 5 and some other numbers have been named.
If we were to write the numbers in five columns as usual we would circle () and just four
other numbers a, b, ¢,d in the 1-, 2-, 3-, 4-columns respectively, as in Fig. 9. We now make a
three-dimensional table of P-positions using just three of these numbers as headings and the
fourth as an entry.
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Table 1(a) shows the case in which a is the entry and b,¢,d the row, column and layer
Tables 1(b,c,d) have b, ¢, d as entries.

headings.

47
52
57

¢l

8 13 13 g 13 18 23 28 & 13 18 23 28 33 38
1116+ 1%+ 11 16+ 11
6 i6 |- 6 21 264+ 16 6 6 6 6 &
6 21 |- 6 16 26 — 21 6 6 6 6 6
1, 2 6 31 16 21 |- %+6 € 6 6 6
[ 31 |- 6 26 21 16— 6 6 6 6 6
[ 1|36+ ; 6 6 6 6
d=9 i |
l l¢6 6 6 6 6
| 6 & 6 6
d =14 - e
. 6 6 6
L6 &
d:lg [
o] e
) }
Table 1(a). Entries a for P-positions {5, a, b, ¢, d}.
i6 6 11 16 21 26 6 11 16 21 26 31 36
+ 7 12+ 7 12+
77 Tl 12 17 22 27+
7l= |12+ 7 17 12 27 22 32+
7| 7 12 17 2t |— |12+
L7 P7 1T 12 27 |- 22 027 12 17
e -
! 12z 12 17> | 27 2 12
| 12 32 - I3+ 12 17
1ar o l 12 17
=13 — .
L le 17
i 17
c=18
17
l

Table 1(b). Entries b for P-positions {5, a,b, ¢, d}.




11
16
21
26
3l
36
41
46
51

b

e

8
13
18
23
28
33
38
43

48
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= 9 14 4 14 19 24 4 9 14 19 24 29 M4
f ’7 8 I3 IS+
‘ 8 13— 8+ 8+
N BRI L__ 18+ 18 13 23 28 -

Ly 8l B> | B+ 13
! _‘23 13 | 2%+ 23 13
P Lo 18 13 23 |»
» S 13 8-
=12 . —
b ! __IJS 1318 |-
_31 13 18 '—
b=17 S
| 18 |—
Table 1(c). Entries ¢ for P-positions {5, a,b, ¢, d}. l
=7 12 712 17 22 7 12 17 22 27 32
4 9= 9 4 4 4| |l4+
4 14 - 14+ 4 4 4|— 9 19 24 294+
119 ]|— 4 4 |- 9 14 24 29 3M+i—
L _L_4 4 4 9 29 14 24
1 a 4 o M+ 14 24 |-
a==b6 -
lw 4l L 14 29 |-
1 14
a=11
L
l
a= 16

Table 1(d). Entries d for P-positions {5,a,b, c, a!}.

Some positions will appear repeatedly because a heading is redundant. These are indicated

by bold figures.

For example

{5,6,12,13, 14}, {5

.6,17,13,14}, {5

.6,22,13,14}, . ..

are really the same position because 12 = 6 + 6 is redundant and so we have a column of 6’s
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in layer 14 of Table 1(a). In {5,6,12,18,19} both 12 and 18 are redundant, so the 19 layer of
that table is almost entirely made up of 6's.

© 1 2 3 4
& 7 8 9
11 12 13 14

(b

N

@
(o)

"

F
1
i
I
'

Figure 9. The General Position {5, z,y,...}.

In {5, 16, 7, 13, 9} it is the entry 16 = 7 + 9 that is redundant, so 16 can be replaced by
any of

21, 26,31, 36,41,...

and we have written 16+ to indicate this. Really an entry n+ is short for infinitely many
entries

n,n+o,n+10,n+ 15,n 4+ 20,....

The entries in Table 1(a) were computed in lexicographic order, by making due allowance
for these repetitions and otherwise entering the least number 5k + 1 not appearing earlier in
the same row, column or file.

You'll probably find the method easier to follow in Table 2 which deals with positions
{4, a,b,c} in a similar way. This time each entry is the smallest number b = 4k + 2 which has
not appeared earlier in its row or column and an entry b+, shorthand for

bb+4,b+8,b+12,b+16,...

is made when b = 2a or 2¢. It can be deduced from the quiet end theorem that other kinds of
repetition will not appear.

Table 3 gives pairs # < y for which {4,z,y} is already a P-position, extracted from an
extended version of Table 2, kindly calculated for us by Richard Gerritse. It seems that the
ratio y/x approaches 2-56.. ..

As soon as 4 or 5 arises in your game you should refer to the appropriate one of these
tables. If 6 turns up first, see the corresponding Table 7 in the Extras.
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117

18
22
26

304

19 23 27

18+

10

6 14 18

14 6 10
10 6
18 14
22 26
26 22
30 34
34 30
38 42
42 38
464
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22
26
14

6
10
18
38
42
30

58
624

26
22
18
10

14
42
a8
34

66

T0+

39 43 47 51
30 34+
34 30 38 424
26 30 34
22 34 30
14 18
6 10 42 38
10 6 14 18
18 14 6 10
46 22 10 6
50 26 18 14
a8 22 26
42 26 22
54 62

50
A8 46
66 BL!

58
62 70

66
70 T4
74 78
T8+

82

86

90

RS

55

38
42

30
22
26

14

10
18
34

59 63 67 Tl

42

34
26
22
18
10

6
14

66
50
46
58
54
62
82
70
74
78
94
86

46
50

54
A8
62
26
22
14

10
18
30

38
42

T8
66

70
74
82

504
46

18
10

6
14
22
26
30
34

42

34
14

6
10
18
22
26
42
38
86

90
70
T4
8

75

58+

50
46
54

34

18
10

14
26
22

38
42

Table 2. Values of b for which {4,a,b, ¢} is a P-position.
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38
22
26
14

10
18

34
90
66
86
94
70
74

14
34
30
42
38
94
90
T8
0

66
62
70
58

54

74

30
26
22
14

10
18
34
46
42
50
98
82

70
T4
66
T8
58

14
22
26
46
54

50
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T Y T Y T y T Y T Y T Yy T Y
5 11 107 269 205 531 303 7T 405 1043 501 1291 603 1549
7 13 109 279 207 529 305 783 407 1045 503 1289 605 1555
9 19 111 277 211 541 311 797 409 1051 505 1299 607 1557
15 33 113 287 213 547 313 BO7 411 1053 511 1309 609 1567
17 43 119 301 219 557 315 805 413 1063 513 1319 615 1577
21 51 121 307 221 567 317 819 415 1065 519 1329 617 1583
23 57 123 309 223 569 321 823 419 1077 521 1339 621 1595
25 7 125 319 227 585 323 829 421 1079 523 1341 623 1593
27 69 129 331 229 583 325 839 425 1095 525 1347 625 1603
29 7hH 131 333 231 593 327 841 427 1097 027 1349 627 1609
31 81 133 343 233 595 329 851 429 1103 533 1371 633 1627
35 89 135 345 237 611 335 857 431 1105 535 1373 635 1625
37 95 141 363 239 613 337 871 433 1115 537 1379 637 1635
39 101 143 365 241 619 339 869 439 1125 539 1381 639 1637
41 103 147 373 245 631 341 879 441 1135 543 1393 643 1649
45 115 149 379 247 629 347 885 447 1145 545 1395 645 1655
47 117 151 385 251 641 349 899 449 1151 549 1411 651 1665
49 127 153 391 253 647 351 901 451 1157 551 1413 653 1679
53 139 155 397 255 (649 353 911 455 1165 553 1423 655 1681
55 137 157 399 257 659 355 909 457 1171 555 1425 657 1687
59 145 163 417 259 665 357 919 459 1177 559 1433 661 1699
61 159 165 423 261 671 359 917 461 1183 561 1443 663 1697
63 161 169 435 265 683 361 927 463 1189 563 1445 667 1709
65 167 171 437 267 685 367 941 465 1195 565 1451 669 1719
71157 173 443 271 697 369 951 469 1207 571 1465 673 1731
73 183 175 445 273 699 371 953 471 1209 573 1471 675 1729
77195 179 453 275 705 375 961 473 1215 575 1477 677 1739
79 193 181 467 281 723 377 971 479 1225 577 1483 679 1741
83 209 185 475 283 725 381 983 481 1235 079 1485 681 1751
85 215 187 477 285 731 383 981 485 1247 H81 1495 687 1757
87 217 189 483 289 743 387 993 487 1245 587 1505 689 1771
91 225 191 489 291 745 389 1003 491 1257 589 1511 691 1769
93 235 197 507 293 755 393 1011 493 1267 591 1517 693 1783
97 243 199 509 295 757 395 1013 495 1269 597 1531 695 1781
99 249 201 515 297 767 401 1031 497 1279 599 1537 701 1803
105 263 203 517 299 765 403 1029 499 1277 601 1543 703 1801
707 1813
Table 3. Pairs x,y for which {4,z,y} is a P-position.

What Shall | Do When g ls Two?

Example: {8,10,22}
Apparently we have to examine infinitely many possible replies. Fortunately there is a way
of doing this in a finite time. A similar method will work for any position with g = 2.
Let’s see how the position will look after some play from {8,10,22}. If 1, 2 or 3 has been
played, we know what to do. Otherwise the only even numbers that can have been played are
4, 6,12, 14
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and the even part of the position must look like one of

{4,6} {4.10} {6.8,10}
{8,10,12,14} {8,10,12} {8,10,14} {8,10,22}

What odd numbers have been played? If the least of them is n, then since {8,10,22}
excludes all of
16,18,20,22,24, . ..

we can suppose that the only relevant odd numbers are among
nn+2n+4n+6,n+12 n+ 14

And if any even moves have been made they will restrict the possibilities still further. For
instance if 6 has been played we can suppose that the odd numbers are one of the sets

n,n+2 n+4 n, n+2 n,n+4 n

Table 4 shows the status of the positions classified in this way. Since the last four columns
repeat indefinitely, this finite table contains the information for every odd n. How was it
computed and why is it periodic?
Let’s take a typical entry:
{8,10,14, n,n + 6,n + 12}.

From this position there are three kinds of option:

(a) the ewen numbers 4, 6 or 12,
(b) the small odd numbers m < n — 14,
(¢) the large odd numbers n —12,n — 10,n —8,n —6,n —4,n — 2, n + 2,n + 4.

Case (a) leads to a position (in an earlier segment of the table) with even part
{4,10},{6,8,10} or {8,10,12, 14}

and we can suppose that these have already been analyzed and found to be ultimately periodic
in n.

A case (b) move leads to o

{8,10,14, m}

since m excludes n and all larger odd numbers. If there is any odd m for which this is a
P-position, then {8,10,14,n,n + 6,n + 12} will be an A -position for all n > m + 14. If not,
we can reject moves in case (b).

Finally, case (c) moves either leave n unchanged or decrease it by at most 12. We conclude
that the outcome of every position in the table is computed in a fixed way from

ultimately periodic information (case (a)),
ultimately constant information (case (b)), and
information in the last few columns (case (c));

it must therefore be ultimately periodic in n.
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Every position with ¢ = 2 can be handled in this way. When we have computed enough to
verify the period, we can decide in particular whether there is any good reply. For {8,10,22}
there isn't one, so it is a P-position.

The Great Unknown

We can best describe our knowledge in terms of the number g. When

g=1

the position is bounded so you can find what to do by working through all positions. Of course
this might take a long time even if one of our theorems already tells you the outcome. We
know that there must a be good reply to {31,37} but don’t know any method which guarantees
to find one in the next millenium. When

g=2

the method we have just described will compute the outcome in a finite but probably even
longer time. If

g is divisible by a prime p > 5

then p is a good reply when it hasn’t already been named; if it has, of course there isn’t any.

The authors have only been able to examine a few particular positions with other values
of g. Table 8 in the Extras contains a complete discussion of {6,9}. Although this is a two-
dimensional table, a periodicity develops which enables us to analyze the position to infinity.
Maybe a similar thing happens for some other positions with ¢ = 3. We computed a much
larger three-dimensional table for {812} (g = 4), but could detect no structure outside the
range covered by our explicit strategy.

16 is the first opening move whose status is in doubt. We don’t know whether {16} has
a good reply nor even any way of finding out in any finite time. You might consider working
upwards testing each possible reply in turn and hoping to detect some structure, but even this
is impossible. We don’t know any way to test the reply 24, say, in any finite time. We don't
even know how to test 100, say, as a possible reply to {16,24}!

The quiet end theorem often eliminates infinitely many replies, for example all odd replies
to {6} or to {16,24}, but it never eliminates any reply that would be infinitely hard to analyze.
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(o0} {79} {11} (7} {911} {9} {11} {
@swy| 0 @l 9 0 457 [ 0 4,7,11)
@8y | mo 0 0 (010110 [45 57 [710] 4
{610} | 8 0 s 89 7 8,13 4l

© | 0 81011 (89 (6 (47 I [26) 14,9]
{8,10,12}| [4,5,6]  [4] (13]  [5,6] [13,14,15  [23)] 6] [14)
(812} | 5| 6 5] ] L1 (913
{10,12} | [4] (4,6]  [16] I I (11,13, 14] [9,14,15,17) 7

(2p | (6 (sl @27 (o) 10 o] 9] 8
{8,10} | [4,5.6]  [4] N [5,6,11]  [23] (13,15] 6,7) (22

sy | 5] 6 60 5 (12 [21) [23) 12

{10} (4] (4, 6] 8] (12 [12] [16] (24,28, 47) [5

{} 6]  [19,24] [24,34] | (13, 30] (6] I 5,7,11,13,...

Table 5. Status of Subsets of {6,7,8,9,10,11,12} and Known Good Replies.

Even members of set at Left; Odd members at head. Bracket is closed when all good replies are
known, so that || indicates a P-position. The last entry contains all primes greater than 3, and may
contain some entries 2°3",

Table 5 tells you the outcome and all the good replies we know to every position made
from the numbers
6,7.8,9,10,11,12

(if 4 or 5 is involved, Tables 2, 3, 1 and Fig. 8 go much further). If you can add any more to
this table or decide whether any number 223" is a good opening move we would like to hear
from you.

Are Outcomes Computable?

We can prove that there must be a way of programming a computer to find the outcome of
{n} even though we don’t know what that way is! The reason is:

There can only be finitely
many good opening moves
2a3b,

For no one of these can divide any other, so that no two can have the same value of a or
the same value of b. So if 2903% is such a number with a, as small as possible, and 2agb
is any other, then we must have b < by and so there are at most by + 1 such numbers, say
ni,nz,...,nk. We suspect there are none!

If you only knew what these numbers were, then you could program your machine with
PORN (Fig. 10) and work out the outcome of any {n}. This argument shows that in the
purely technical sense this is a computable function of n, even though we don’t know what
function it is.
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[START

l 15 n A PRIME 2357

‘ YES NQO
l PRINT “P™ 15 n DIVISIBLE BY
'EAND STOP SUCH A PRIME?
YES NO
PRINT “N¥ 18 n=n,,
AND STOP | OR n = n,,
Y
ORn=n'"
YES | NO

PRINT “P” PRINT “N~
AND STOP AND STOP

Figure 10. PORN, A Program which Decides if {n} is P OR N.

The Etiquette of Sylver Coinage

Few Western readers can understand the subtleties of etiquette in the oriental country from
which our game comes. But at least we can save you from the more obvious gaffes by pointing
out that in Sylver Coinage it is customary for a player who knows he is winning to resign
by naming 1, 2 or 3. This quaint custom is said to originate in the tradition that Hi, who
could see much further than Lo, nobly took upon himself the fate that was ahout to befall his
beloved brother.

When it's plain to all the world that you have a win, any move but 1 will insult your
opponent, but in other cases we advise you to name 3 (2 is possible, but may be misunderstood).
If vour opponent concurs in your analysis, he will respond with 2, but you have allowed him
to express another opinion by naming 1. (Replies to 3 other than 1 or 2 may also be available
but their nuances are harder to interpret.)

Of course, one of the greatest insults you can offer is to name 1, 2 or 3 at the very start of
the game, for this is the philosopher Hu Tchings' prerogative, at least until someone finds a
new way to win.




Extras

Chomp

Here is a game with similar rules to Sylver Coinage. For some fixed number N, the players
alternately name divisors of N which may not be multiples of previously named numbers.
Whoever names 1 loses. If N = 432 = 243% for example, a move is essentially to eat a square
(e.g. 36) from the chocolate bar in Fig. 11, together with all squares below and/or to the right
of it. Square number 1 is poisoned!

214 (8|1
36 |12 |24 48
9 |18 |36 |72 |4
27 |54 [108/216 #32

Figure 11. Chomping at a Chocolate Bar.

The first few P-positions are shown in Fig. 12. Strategy stealing shows that rectangles
larger than 1 x 1 are A-positions; the replies are unique if either side is at most 3, but Ken
Thompson found that 4 x 5 and 5 x 2 bites both answer 8 x 10.

The arithmetic form of the game is due to Fred. Schuh, the geometric one to David Gale.

Zig-Zag

Two players alternately name distinct numbers (which are allowed to be fractional or negative)
and the game ends as soon as the resulting sequence contains either an increasing subsequence
(zig) of length a or a decreasing one (zag) of length b. The normal play ¢ + 1, b + 1 game is
really the same as the misére a, b game, and so we consider only the latter.

Zig-Zag, which was suggested to us by S. Fajtlowicz, sounds difficult to analyze, but fortu-
nately there is a rather clever transformation into a geometrical game like Chomp. We regard
square (r,s) in Fig. 14 as eaten if the number sequence so far contains a rising zig of length
r and a sagging zag of length s that end with the same number. Then the moves are as in
Chomp except that the first move may eat square (1,1) only, and the innermost square eaten
on any subsequent move must be adjacent to a previously eaten square. The squares (a, 1)
and (1,b) are poisoned, so play really goes on inside the outlined @ — 1 by b — 1 chocolate
bar of Fig. 14.

632
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AV A A
K P o] - 5
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Figure 12. P-positions in Chomp.
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Figure 13. P-positions for Zig-Zag.
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Figure 14. The Chocolate Bar Form of Zig-Zag.

Ifa >3 62> 3and a+b < 17, the first player wins the misére a-Zig, b-Zag game,
because David Seal's calculations show that the corresponding a — 1 by b — 1 chocolate bars
are N-positions.

By assigning Heads to Horizontal edges and Tails to verTical ones we get an equivalent
game with coin sequences, involving moves of a head rightwards over tails or a tail leftwards
over heads, and Seal used this idea to compute Fig. 13 showing all P-positions for which the
uneaten part of the chocolate bar fits inside a 5 x 5 square.

To find P-positions in both Chomp and Zig-Zag, we used the tabular technique of Chapter
15, and the Clique Technique of this one.

More Cliques for Sylver Coinage

To follow the cliques in Table 6, we advise you to set out the remaining numbers as we did in
Figs. 2, 3, 4 for the cases {4,5}, {6,7} and {7,10,12}. Numbers not mentioned are excluded
by a good reply.

5-Pairs

The safe combinations {5, z, y} are of three types. In the top drawer in Fig. 8 are those with y
so much larger than x that the coordinates {a, b, ¢, d} are {x, 2z, 3z, y}. For these it seems that
y/z tends to 3. But are there infinitely many numbers in the top drawer? The middle drawer
contains the remaining ones for which z + y is a multiple of 5. It seems that for these, = and
y always differ by 1 or 2. In the bottom drawer we have arranged the pairs with coordinates
{z,y,z + y,2y} where = and y are in the order given. It seems that here, as in the second
drawer, y/z tends to 1.
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position replies strategy, with cliques indicated by |
{4,5} 11! 1’*]( 3)](6.7)]11!

(6,
{4,7} 13! 17](2,3)](5,6)](9,10)]13!
{4,9} 19! 17](2,3)](5,11)(6,11)(7,10)](14,15)]19!
{5.6} 190 17](2,3)](4.7)(8,9)](13,14)]19!
{5,7} 81 17](2,3)](4.6)(9,13)(11,13)8!
{5,8} 70 17](2,3)](4,11)(6,9)7!
{59} 310 17](2,3)](4.11)(6.8)(7.13)](12,16)] (17,21)](22.26)]31!
{6,7} 16]  17](2,3)(4,5)](8,9)(8,10)(8.11)(9.10)(9,11)](15,23)(17,22)16!
{7,8} 51 17](2,3))(4,13)(6,9)(6,10)(6,11)5!
{7,9} 191241 17)(2,3)](4,10)(5,13)(6,8)(6,10)(6,11)](12,15)(17,20)(22,26)(29,33)19!24!

after {7.9,22.26} (12,17)(19,24)(15,20)

{7,9,29,33} (12,15)(17,20)(19,31)(22,26)(24,26) ...
{7.9.19}  (12,15)(15,17)(15,20)](22,24)(29,31)
{7924}  (12,15)(17,20)(19,22)](26,29)

Table 6. Some Complete Strategies for Sylver Coinage.

Positions Containing 6

As in our other analyses, we write the numbers in six columns and cirele 0 and five other
numbers a, b, ¢, d, e, one in each of the 1-, 2-, 3-, 4- and 5-columns respectively. We tabulate
P-positions by entries ¢ in a 4-dimensional table (Table 7) whose coordinates, a,b,d, e are
congruent to 1, 2, 4, 5, modulo 6.

Entries outside the areas enclosed by full lines are found by repeating entries according to
the arrows, where appropriate. The tables for b =8, d =4 and b = 8, d = 16 can be extended
indefinitely by repeating the portions between the pecked lines and increasing all entries by
12 or 60 respectively. The two tables with d = 10, b = 8 or 14 contain no further entries. All
further entries in that for b = 14, d = 16 are 15.

Table 8 represents a complete discussion of positions containing {6,9}. Reduced positions
contain one, or possibly two neighboring, numbers of form 3% + 1, and of form 3k + 2; pairs
of rows and columns refer to the latter and former possibilities. Positions represented by cells
outside the crenellated line are not reduced. The pattern within the rectangular quadrant
continues indefinitely. The minus signs denote N -positions, the plus signs P-positions and
the “=" signs A-positions which, at a casual glance at the pattern, might be mistaken for
P-positions.

Sylver Coinage Has Infinite Nim-Values

If we make naming 1 an illegal rather than a stupid move, Sylver Coinage becomes a normal
play rather than a misére play game and we could consider adding it to other games using the
Sprague-Grundy theory. However since some positions have infinitely many options, we can
expect infinite nim-values and indeed they happen!




4]
7

e
[

19

Sylver Coinage Has Infinite Nim-Values

637
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Bold type indicates that the row
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Table 7. P-Positions Containing 6.
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Table 8. A Complete Discussion of {6,9}.
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For example, G(2,2n+3) = n(n = 0), 50 G(2) = w. On the other hand, G(3,3n+1,3n+2)=1
(n > 1), so G(3) = 1. Here are some other nim-values:

E=456789 1011 13 14 15 16 17 19 20 22 23 25 26 28 29 31 32

GBk) =231461 7 8 911 1 12 14 15 15 17 19 20 21 23 24 26 27
G4k) = 730578 1 914 415 7?16 19 ?

G(464n—14n+1) =1 G(4,64n +14n+3) =0 (n>=1)
G(5,6) =17, G(5,7) =38, G(58) = 10, G(6,7) =9, G(33n—13n+1) =5

(n>6),
G(3IN—89In—4)=G3In+2In+7) =G(3,9n+89In+13) = 10 (n > 3).

A Few Final Questions

Is there any effective technique for computing the outcome and all good replies for the general
position?

If the game is played “between intelligent players”, is the first person to make the game
bounded the loser?

Is there a winning strategy of bounded length?

Is there an N-position with g > 1 for which all good replies lead to positions with g = 1?7

Is G(4) =w + 17 or is G(4) = 6, say?
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The King and the Consumer

For fools rush in where angels fear to tread.
Alexander Pope, Essay on Crificism.

. because your adversary the devil, as a roaring lion,
walketh about, seeking whom he may devour.
1 Peter 5:8

Figure 1. Chas. Plays Geo.

Chessgo, Kinggo and Dukego

These games are played on some i by j board. One player, Chas., plays Chess with a lone
chess piece which might be a King, or a Knight, or a Duke, or a Ferz, whose moves are shown
in Fig. 2. The variants of Chessgo are named for various real and Fairy Chess pieces, Kinggo
for a King, etc. Only Kinggo and Dukego will be considered in any detail here.

(=3

641
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Figure 2. Various Chesspersons.

Chas.’s opponent, Geo., has a number of black (blocking) Go stones and a number of white
(wandering) ones. The game starts with the chess piece on a specified square of the otherwise
empty board. At each turn the chess piece moves to any legitimate empty square and Geo. then
does one of the following:

(a) puts a new Go stone (of either color) on any empty square,
(b) moves a wandering (white) stone already on the board to any other empty square,
(c) passes.

If the chess piece reaches any square on the edge of the board, Chas. wins. If Geo. succeeds
in surrounding the chess piece so that it has no legal moves, he wins. A game that continues
forever is declared a draw.

Quadraphage

This is the special case, invented by R. Epstein, where there are no wandering stones and
enough blocking ones to cover the whole board. The title of this chapter refers to the case of
Quadraphage in which the chessperson is the King. In Epstein’s language, Geo. is a square-
eater (graeco-latin tesseravore, latino-greek quadraphage). Because Geo. eats a square at every
turn, this game ends after at most ij — 1 turns on an i by j board. The starting position for the
chessperson is conventionally the middle of the board, or as near as possible if i or j is even.

Since having the first move is never a disadvantage, a strategy-copying argument shows
that there are only three possible outcomes for a well-played Quadraphage game from a given
starting position on a finite board. Either Geo. wins (even if Chas. moves first) or Chas. wins
(even if Geo. moves first) or the first player to move wins. A fair position is one in which
the first player to move can win.

We'll show that the fair starting positions for the Duke on a quarter-infinite board are all
of the squares on the third rank or file, execept those that are also on the first or second file or
rank. We'll also show that the fair starting positions for the King on this board are all of the
squares on the ninth rank or file, except those which are also on a lower file or rank. Finally
we'll show that the square board which is fair (from the conventional starting position) for a
Duke is the ordinary 8 by 8 chessboard, and we assert that the only fair and square boards
for a King are 33 by 33 and 34 by 34. On boards smaller than these, Chas. should win even
if Geo. starts first and the reverse should happen on larger boards.
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The Angel and the Square-Eater

The game of Chessgo is not well understood and it’s very difficult to exhibit explicit winning
strategies for Chas. even on modest sized boards. For example it seems very likely indeed that
the Knight can draw on an infinite board although this seems extremely difficult to prove.
Indeed it’s never been shown that there is any generalized chess piece that can draw on the
infinite board. This suggests the following problem. An angel (of power 1000) is a chessperson
who can fly in one move to any empty square that could be reached by a thousand King moves.

Angels, of course, have wings, so it won’t matter if some of the intervening squares have been
eaten.

Figure 3. The Angel and the Square-Eater.

We'll say the angel wins by continuing forever (i.e. drawing the game of Quadraphage)
against a square-eating devil (who can devour any square of the board, no matter how far
away it is from his previous moves). The devil, of course, wins if he can surround the angel
with a sulphurous moat, a thousand squares wide, of eaten squares. Can you give an explicit
strategy that’s guaranteed to win for the angel?

If the devil adopts certain cunning tactics worked out for him by Andreas Blass and John
Conway, then infinitely often the angel will find itself decreasing its distance from the centre
by arbitrarily large amounts. Although the angel never seems to be in any real danger, its
path must also contain arbitrarily convoluted spirals.

Strategy and Tactics

In both Dukego and Kinggo it's possible to distinguish between strategic moves and tactical
ones. In either game Geo. wins, on large enough boards, by first playing a few strategic stones
on squares far away from the chess piece. When the chess piece gets closer to the edge of the
board, Geo. switches to tactical moves fairly close to him. Whenever the chess piece is driven
away from the edge towards the centre of the board, Geo. reverts to strategic moves.




644 Chapter 19. The King and the Consumer &

Dukego

Dukego is much simpler than Kinggo and so we consider it first. You might like to try
playing it yourself before reading this section. The optimal strategies we present here were
first discovered for square boards by Solomon Golomb and for arbitrary rectangular boards by
Greg Martin. We consider various infinite boards first.

On an infinite half-plane the Duke can win only if he can get to the edge at his first move.
In any other situation Geo. can draw by playing directly between the Duke and the edge. In
fact Geo. needs only one white (wandering) stone.

On an infinite strip of width i with ¢ < 4 the Duke, moving first, can win immediately. If
i = 4 and Geo. moves first he can draw by playing between the Duke and the nearest edge
and again needs only one stone, if it’s a wandering one.

On an infinite quarter-plane the Duke, moving first, can win if he starts within a three
squares wide border. His initial move attacks the edge and Geo. has no choice but to move
directly hetween Duke and edge. The Duke then charges towards the corner. At each move
Geo. is forced to play between the Duke and the edge and eventually the Duke wins by reaching
one of the two squares next to the corner.

If Geo. moves first against the Duke on the third rank or file of an infinite quarter plane, he
can draw using just one blocking stone and one wandering one. He first puts his blocking stone
at the strategic position diagonally next to the corner (Fig. 4). This blocks the only square
from which the Duke might attack two boundary squares at once. Whenever the Duke moves
onto a lower case letter, Geo. puts his wandering stone on the corresponding capital letter.

> (13| [
@ ot ol

ZYXwviu
ZY X WVIU

Figure 4. Geo. Beats the Duke on a Quarter-Infinite Board.

On the 8 by 8 board Geo. can draw using only three wandering stones (Fig. 5a). He always
arranges to have his stones on the capital letters corresponding to the small letters covered by
the Duke. Since the combinations of small letters on any two contiguous squares never differ
by more than one letter, this is always possible.

We once thought that the Duke could win on a 7 x j board, even if Geo. starts, but Greg
Martin showed that this is incorrect. His clever strategy is shown in Fig. 5b, with the Duke
starting on the center square labelled b: Geo. places his first stone at B.

Martin also devised the strategy shown in Fig 5¢, by which Geo., moving first, can win on
the 6 x 9 board. Here the Duke starts on the centre square labelled cf and Geo. places his
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A |abe |abf |abg|abh |B
adt [abd|ab |ab |abc |bci
ads|ad |a |b |bc [|bcj
adr [ad |d |c |bc |bck
adglacd |ed |ed |bed |bel
D J|cdpl|edoledn|ecdm|C

P |O [N M
Figure 5a. Geo. Beats the Duke on an Ordinary Chessboard.
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Figure 5b. Geo. wins on 7 x 8 hoard. Figure 5¢. Geo. wins on 6 x 9 board.

first stone directly beneath it at F. If the Duke moves northward, then Geo. simply reflects
the board about its horizontal centerline, and moves his stone from the old F to its reflexion,
which is immediately north of the Duke. As long as the Duke moves only north and south,
Geo. can continue to respond by moving his single stone directly in front of him. Eventually
the Duke will make a move east or west and then Geo. can play according to Fig 5c¢ or its
reflexion.

The Geo. strategy shown on all three boards of Fig. 5 uses three wandering stones. But
Geo. can also draw using only two wandering stones and two blocking stones. On the 8 x 8
board this is accomplished simply by placing the blocking stones on A and C. This works
because every square with three letters in Fig. 5a includes at least one of a and c.

Greg Martin has shown that two wandering stones, or just one wandering stone and four
blocking stones, are also sufficient for Geo. to draw on the the 7 x 8 and 6 x 9 boards. It
is much harder to find out how many blocking stones Geo. needs when he has no wandering
stones.

Tabhle 1 summarizes the fair starting positions in Dukego. Martin’s paper includes a concise
proof that the Duke, going first, can win on 8 x 8 or on 6 x j for any value of j.
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Size of Board | Starting Position Least Number of Stones
Giving Geo. at least
a Draw, Moving First
4 x 00 centre 1 wandering
3rd rank or file
quarter-infinite | exclusing lst or 1 wandering
2nd file or rank
8x8 3 wandering, or
7x8 2 wandering, 2 blocking, or
6x34,7>=9 1 wandering, 4 blocking, or
? blocking

Table 1. Fair Boards for Dukego.

The Game of Kinggo

The remaining sections of this chapter are devoted to Kinggo.

The Edge Attack

Figure 6 shows how the King can force his way to a nearby edge of the board if this is
inadequately defended. The solid line indicates the edge of the board and the dot shows the
present position of the King. We suppose that the lettered squares are empty; Go stones may
occupy any or all of the other squares. In each case Geo. is to move.

. . [ <
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(a) (b © ) @) (£
. Elf FIFf|F
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cle|@leTe BEEGTEE FIE|f @ FFF
clele @< et (fIEIFlais [FIF]F] JFLFIF F [S|FIETFTFY

_-
St

(b

Figure 6. How the King Gets to the Edge.

£

If Geo. moves outside the region shown, the King simply advances towards the edge, while
if Geo. moves on to a letter x or x’ (x = a,b,... ,g) the King makes a move which results in a
case of Fig. 6(x) or its reflexion. If, for example, Geo. puts a stone in the lower right corner
(labelled d') of Fig. 6(f), the King moves downwards and achieves a reflexion of Fig. 6(d).
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Figure 7. How the King Wins on an Infinite Strip of Width Eleven.

Now a glance at Fig. 7 and Fig. 6(h) shows that:

the King can win

on an infinite strip
of width at most 11,
even if Geo. goes first.

The Edge Defence

h W
hlh Wlh
hih|h Wik

Figure 8. How Geo. Guards the Edge Against the King.

OD e | e |3 DY) @
i S R

N ENERES

N REERES

S EAEAES

Figure 8, which again refers back to Fig. 6, shows that there are only five possible moves
(7,7,7,7,7) that give Geo. any chance of stopping the King approaching from the sixth rank
of an empty board. Figure 9(k) shows how Geo. can successfully defend the edge with any of
these five moves. The King may move from any of the shaded squares. If he remains on such
a square Geo. passes. When the King moves on to a letter x or x' (x = jk,1.....q) Geo. can
move into a case of Fig. 9(x) or its reflexion (as he did in Fig. 6). Note that the proof of
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Figure 9. Three Wandering Stones Ward Off the King,.

each of Figs. 9(j) to 9(q) depends on the others, because the King can nip from one of these
positions to another in ingenious ways.

Since none of these positions has more than three stones, Geo. can defend the edge with
only three wandering stones.

A Memoryless Edge Defence

Figure 10, which uses the same conventions as Fig. 5, shows another way that Geo. can stop
the King approaching from the sixth rank of an empty board using just three wandering stones.
Unlike Fig. 9, this is memoryless in the sense that the positions of these stones depend only
onh the position of the King and not on how he got there.

In later sections of this chapter Geo. will want to patch together several copies of this
defence (Figs. 11 and 12). Figure 11 shows how it may be joined to its left-right mirror
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image, and Fig. 12 shows how to change its phase by one square. Many other memoryless
edge defences can be obtained by joining various combinations of Figs. 10, 11, 12 and their
translates and reflexions.
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Figure 11. Wedding Figure 10 with Its Reflexion.
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Figure 12. Getting Figure 10 One Square Out of Step with Itself.
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Some results for infinite strips follow immediately from Figs. 9, 10, 11, 12:

On an infinite strip

of width at least 12,
Geo., moving first, can draw
with just 3 wandering stones.

On an infinite strip
of width at least 13,
he can draw even if
the King moves first.

If the King advances towards the edge he will be stopped at Fig. 9(q) and if the King refuses
to attack the edge, Geo. can still obtain 3 consecutive stones as in that figure.

The Edge-Corner Attack

On an infinite strip of width 13, the King can't win, but can force his way to the second
rank, as in Fig. 9(q). He may then charge along this rank in either direction, forcing Geo. to
accompany him. Even if Geo. has a large supply of stones he can do no more than build up
a solid wall along the first rank and on a finite board the edge-charging King will eventually
reach a corner.

We now claim that for an adequate defence, Geo. must have at least three strategic stones
stationed somewhere between the edge-charging King and the corner. All of these three stones
must be positioned somewhere in the first five ranks. The proof of this follows from Fig.
13, which lists the appropriate moves for the King against all positions not satisfying these
conditions. There are squares with one of the first seven capital letters and infinitely many
squares with no letters at all. At Geo.’s move he has at most 3 stones in the figure. The line

n

“Versus A°, go to A, position —

means that if none (superseript 0) of the 3 stones are on A, then the King moves to A and
wins at once. The line

“Versus A'B°C°D='E=!, go to C, position a”
means that if Geo. has one stone on A, none on B or C, and at most one (superscript <1) on
each of D and E, the King should move to C' and obtain a translate of the position shown in
Fig. 13(a).

Since in every case the King counters Geo.’s moves to any of Figs. 13(a) to 13(g) by a
move resulting in another of these figures, Geo. can never force the King above the fifth rank
or prevent him from continuing the edge-corner attack, although he can keep him moving to
and fro among these seven figures.

On the other hand, almost all combinations of three strategic stones along the first rank
of the board will suffice for Geo. to stop the edge-corner attack. Figure 14 shows the only ex-
ceptions.
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Figure 14. Triplets Which Fail to Stop the Edge-Charging King.
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In Fig. 14(a) Geo. has three strategic stones at al, bl, cl, as well as his tactical stones,
hl, i1, ..., defending the edge near the King. The King moves to 1; Geo. is forced to put a
stone at 2; the King moves to 3; and so on. The King's move to 9 guarantees him a win by
Fig. 6(f) (reflected).

Figure 14(b) uses a similar notation to show how the King wins if Geo.’s strategic stones
are at dl, el, f1.

Strategic and Tactical Stones

Since Geo. can stop an edge corner attack with just three extra stones, and most combinations
of three stones suffice, it’s convenient to call his three most distant stones in the first five ranks
along any edge of the board strategic stones; his other stones are tactical ones. The tactical
stones try to stop the King winning along the side and the strategic ones then prevent him
from winning the ensuing edge-corner attack.

Let’s consider for instance the game on an infinite strip of width 23 (Figure 15). The King
starts at 1; Geo. puts a stone at 2; the King moves to 3; Geo. puts a stone at 4; and so on.
The crucial position arises when Geo. puts a stone at 16. Where should the King move now?
Although various moves look plausible, only one succeeds!

You must distinguish between strategy and tactics if you're to find the right move. The
stones 4, 6 and 8 defend the right flank, so 10, 12 and 16 are needed to defend the left one.
Since the stone at 16 is required for strategic purposes it is factically worthless.

So the King pretends that 16 is empty and moves to 17, which would give him a tactical
victory via Fig. 6(g)! Any other King move would lose to a defence at a or 3.

Of course, since 16 isn't empty, the game won’t end on the lower edge, for Geo. can stop the
edge attack, but only by using the stone at 16. Eventually the King would have an opportunity
to move to 16 if it were vacant. Instead of doing this he embarks on an unstoppable edge-corner
attack, running along the second rank towards the left. Geo. can eventually use his stones
10 and 12 to divert the King into various positions of Fig. 13 but can’t halt the edge-corner
assault.
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Figure 15. The King Draws a Typical Game on an Infinite Strip of Width 23.
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This sort of argument shows that:

if Geo. is required to place
his first 10 stones on the
top and bottom ranks, the
King can draw on an
infinite strip of width 23,
even when Geo. moves first

We believe that this remains true when we remove the constraints on Geo.’s initial moves,
since it seems very unlikely that he gains any advantage by putting his stones nearer to the
middle. Although such moves seem futile, we haven't managed to exhibit a precise strategy
by which the King can refute them.

Corner Tactics

Figure 16 shows how Geo. defends the corner against an attack from either edge using three
consecutive blocking stones and three wandering ones. The edges can be continued using Fig.
10 to give a strategy for Geo. on a quarter-infinite board.

Although it defends the corner from attack along either edge, this provides only a weak
defence against a direct attack towards the corner along the diagonal. It defends against a
King on the tenth rank and tenth file of an empty board only when Geo. moves first. Since
Geo. must first enter his three strategic stones, if the King moves first he will arrive at the
sixth rank and file before Geo. has put any wandering stone on the hoard, and Fig. 16 now
requires Geo. to put wandering stones on both F' and X. In fact Fig. 17 (which should be
used in conjunction with Fig. 6) shows that the King can now win against any strategy for
Geo., even if there are stones on all the indicated squares of Fig. 17(a). This figure depends
on Figs. 17(b) to 17(e) whose proofs are left to the reader. Figure 17 shows that Geo.’s only
hope of defending the corner against a diagonally attacking King, starting from the tenth rank
and file, requires that his first three stones be placed elsewhere. One promising possibility
uses squares a2, a3, ah along one edge, when Geo.’s major problem is to find an appropriate
continuation when the King arrives on the sixth rank and file. Figure 18(a) shows that there
is only one possibility (indicated by 7). The proof of Fig. 18 depends on Fig. 17 and Fig. 6,
but we again leave some of these proofs to the reader.

So there’s only one move with which Geo. can successfully defend Fig. 18(a)! His complete
strategy appears in Fig. 19 with the edges extended by Fig. 10. With the three blocking
stones positioned as shown, he defends the corner against attacks along edges or diagonal.

Combining Figs. 13 and 19 we have:

the fair starting positions
on the quarter-infinite board
are those on the ninth rank or file,
excluding lesser files or ranks.
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Figure 16. Three Blocking and Three Wandering Stones Defend the Corner.
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Figure 19. Memoryless Corner Defence.
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Geo., moving first, can defend any such position with just three blocking stones and three
wandering ones according to Fig. 19. But if the King moves first, he attacks the nearest edge,
ignoring the three further stones between him and the corner as in the sample game of Fig.
15. Since Fig. 13 shows that Geo. needs three strategic stones to defend the corner, the King
can either win on the edge or divert to a winning edge-corner assault as in Fig. 13.

Defence on Large Square Boards

We've seen that Geo. can defend a corner with three blocking stones and three wandering
ones, so he can defend a large enough square board with twelve blocking stones (three in each
corner) and three wandering ones. He first puts the twelve blocking stones in their permanent
places. If the board is 35 x 35 or bigger, the King begins at least 18 squares from any edge, so
he’s still at least 6 squares away from the edge after Geo. has placed his 12-strategic stones. So,

Geo., moving first,
can win on a square board
of size 35 x 35 or larger.
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Figure 20. The Centred King on a 33 x 33 Board.
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The 33 x 33 Board

We'll now show you a more intricate defence which allows Geo., moving first, to survive on a
33 x 33 board with just 12 (wandering) stones. The details are in Figs. 20 to 26.

The Centred King

So long as the King stays in the central region of Fig. 20, Geo. puts stones on certain strategic
squares, marked with circles on the perimeter of the board. There are 32 of these, 3 near
each corner and 5 on each edge. Geo. puts the first four stones one on each edge, and the
distribution of his stones after the King has made four or more moves is shown in Fig. 21, a
close-up of part of Fig. 20 (the four quarters of the board are congruent). Most of the squares
in the central region are divided into nine subsquares, the central one of which is always empty.
The other eight subsquares tell Geo. how many stones he should have in each corresponding
area. For example, if the King moves to a square marked

3
14

then Geo. moves so that he has three stones on the left edge, one near the hottom left corner
and four on the bottom edge. The order in which Geo. puts his stones in the three squares
near the corner doesn’t matter, but of the five strategic squares on each edge, it’s the middle
onhe that must he occupied last. A reasonable order is indicated by the numbers 1,2,3,4,5 in
the circles in Figs. 20 and 21.

A few squares on the main diagonals of Fig. 21 contain arrows:

1 means | | lor| 2 1 and
N2 2 |

1 | means 2 | lor| 3 | lor| 2 0 but not| 3 0

rl

2V 2 2 3 3

o Y

Geo. can use any of these alternatives as a satisfactory defence.

Leaving the Central Region

If the King leaves the central region of Fig. 20 via a square marked as in Fig. 22(a), we’'ll say
that he’s cornered in the lower left of the board, and then Geo. will keep him inside the region
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Leaving the Central Region
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Figure 21. Close-up of Figure 20.
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Figure 22. Key to Markings in Figures 20, 21, 23, 24, 25 (see text).

shown in Fig. 23 by making tactical moves that prevent the King from reaching a shaded
square, so that he can only “re-centre” himself by moving to a square marked as in Fig. 22(e).
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Figure 23. The Cornered King.
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If the King moves to squares marked as in Fig. 22(b), (c¢) or (d) he is correspondingly cornered
in the upper left, upper right or lower right of the board. If the King moves to a square labelled
as in Fig. 22(f) he is cornered in the lower left or lower right of the board, depending on the
direction he came from. If he moves to a label like Fig. 22(g) he is sidelined (see later) and
when he moves to one like Fig. 22(h) he is either sidelined or cornered, again depending on
which way he came; if diagonally, he's sidelined; if horizontally then he’ll be pushed back to
the corner whence he came.

The Cornered King

Figure 24, a close-up of Fig. 23, reveals the tactical details that Geo. uses to keep the King
cornered with just three wandering stones and nine static ones (semi-stationary, both strategic
and tactical). Of course, when the King first becomes cornered by moving to a square marked
as in Fig. 22(a), Geo. may not have his nine static stones in the exact places shown in Fig.
24, but he will have three stones between the King and the lower left corner, and three on
the bottom edge and three on the left edge. Geo. uses the stones already on the boundary as
substitutes for any stones missing from Fig. 24. When the tactics call for placing a stone on
a square already occupied, Geo. places a stone on an unoccupied circle in Fig. 24.

Suppose, for example, that the King leaves the central area of Fig. 20 by moving to square
k4 (see Fig. 1). He must have come from [5, marked so there are already three stones on the

8

left-edge, three as indicated near the lower left corner and five in the squares 2, 4, 5 and those
next to Z and A and between them (“3” and “1”). The King is now on a square labelled “s24”
so Geo. puts his last stone (the white one in Fig. 1) on S and continues to follow Fig. 24 with
the stone on “5” substituting for the missing one between Z and A.

The right arrow in certain squares near the top right of Fig. 24 means that the third

genuinely wandering (non-static) stone belongs on a strategic square on the right edge.

The Sidelined King

If the King leaves the central area of Fig. 20 by moving onto a square marked as in Fig. 22(g)
he is sidelined as in Fig. 25. Geo. tactically keeps the King off the shaded squares and the
King can only re-centre himself by moving onto a square marked as in Fig. 22(e).

The notation in Fig. 26 (a close-up of Fig. 25) is as in Figs. 21 and 24, but we now have
some squares.
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Figure 24. Close-up of Figure 23.
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These advise Geo. to have one stone on each of the left and right edges (shown in Fig. 25 in
their lowest and highest positions) and siz on the bottom edge, not only the usual five but one
on J or @ as well. [Assume in Fig. 26 that Geo. has 6 static stones on 1,2, 3,4, J,Q, and that
one of the last two is substituting for 5.]
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Figure 25. The Sidelined King.

How Chas. Can Win on a 34 x 34 Board

Geo., going first, can survive in Kinggo with 12 wandering stones on a 33 x 33 board, so he
can certainly survive on a 35 x 35 or larger board, even if the King goes first.

However it seems that the King can win on a 34 x 34 hoard if he moves first. Here's how
he does it. His first three moves diagonally attack the nearest corner. He then turns left or
right and attacks the adjacent corner in the half of the board where Geo. has at most one
stone. After 9 more moves he is at [6, say, and Geo. has been unable to get 9 useful stones on
the board. If the corner is adequately defended (with 3 stones), then one flank or the other is
weak and a carefully executed edge-corner attack eventually leads to victory.
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Figure 26. Close-up of Figure 25.

Unfortunately we haven't been able to formalize these remarks into a strategy for Chas.
that's even as explicit as Geo.’s 33 x 33 one.

Rectangular Boards

Geo. can't beat the King on the infinite strip of width 23, even if he moves first and has an
unlimited supply of stones. However, if he moves first on a 24 by n board, he can win for
sufficiently large n. The minimum value of n seems to be about 63. The King is immediately
sidelined along whichever long edge he’s nearest to. The King can circumvent the pseudo-
corners (I and R in Fig. 26) of Geo.’s sideline defence, but only by moving back to squares
about midway hetween the two long edges. Geo. can then defend a second pseudocorner be-
tween the real corner and the first one. By the time the King reaches the corner, Geo. has
prepared defences of both corners along a short edge of the board and a pair of opposite
pesudocorners somewhere between the King and the unattacked short edge.

For each value of 7, 24 < i < 37, there appears to be a range of values of j for which the 4
by j board is a fair battleground for a Quadraphage game against the Chess King. We believe
that the 32 x 33 board is fair and that Geo., moving first, wins with a strategy similar to that
we gave for the 33 x 33 board. We leave the problem of determining the dimensions of all fair
Quadraphage boards as a challenge for Omar.




Extras

Many-Dimensional Angels

Many-dimensional angels can escape from the corresponding hyvpercube-eaters. This has been
proved by Tom Koérner who thinks that his proof could conceivably be adapted to the two-
dimensional game. Don’t write to us with your solution to the Angel problem unless you've
taken account of the remarks on p. 643.

Games of Encirclement

The games of this Chapter, and of the next two, are ones of encirclement or escape. There are
many games, going a long way back in history, in which this idea is combined with varying
kinds of capture. Here are a few examples.

Wolves-and-Sheep

There are several games played on Solitaire-like boards (Chapter 23). In Wolves-and-Sheep
(Fig. 27(a)) the shepherd has 20 sheep, which have first move. They move one place forward
or sideways only, onto unoccupied places. The two wolves can move similarly but on any of
the indicated lines and can capture in these directions by jumping as in checkers (draughts),
including multiple captures. A wolf failing to make a possible capture may be removed by the
shepherd, so the sheep may be used as decoys. The shepherd wins if he gets nine sheep into
the fold (top 9 positions of board).

L |

(a) (b) (¢)

Figure 27. Wolves, Sheep and Other Animals.
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The games shown in Figs. 27(b) and (c) are called Fox and Geese, although we use this
name for a different game in the next chapter. They are similar to Wolves-and-Sheep, but
there are no diagonal maoves. The fox starts in any unoccupied position, and the geese try to
crowd the fox into a corner; In Fig. 27(b) the 13 geese can move in any of the four orthogonal
directions, but the 17 geese of Fig. 27(c) can’t move backwards; they move like the sheep in
Wolves and Sheep.

Hala-tafl (the Fox Game), and Freystafl are mentioned in the later Icelandic sagas. As
in the Chapter 20 version of Fox and Geese, the more numerous animals win with correct play,
but it's very easy to make mistakes!

Tablut
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Figure 28. The Start of a Game of Tablut. Figure 29. A Muscovite Captures T'wo Swedes!
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Linnaeus, on his 1732 visit to Lapland, recorded a game played on a 9 x 9 board (Fig. 28)
whose centre square, the Konakis or throne, may only be occupied by the Swedish King. He
is protected by 8 blond Swedes and confronted by the 16 swarthy Muscovites. All the pieces
move like the rook in Chess, any distance orthogonally. Capture of the King is by surrounding
him, N, S, E and W by four Muscovites or by three Muscovites with the Konakis as the fourth
square. Any other piece is removed by custodian capture, i.e. by placing two opposing pieces
to the immediate N and S, or E and W of it. Figure 29 snows a Muscovite capturing two
Swedes. A piece may move “into custody” without being captured. The aim of the Swedes is
to get their King to the edge of the board.

Saxon Hnefatafl

Only a fragment of a board has been found; it is probable that the game was played using the
19 x 19 positions of a modern Go hoard. See R.C. Bell's excellent little book for a possible
reconstruction from a tenth century English manuscript. The game was evidently like Tablut
apart from the size of the board and the number and position of the pieces.

We finish this chapter with two Chess problems which also involve escape or encirclement.
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King and Rook Versus King

Most beginning Chess players soon learn how
to win this ending, so it's a surprise to find a
couple of non-trivial problems which use just

this material, albeit on a quarter-infinite board.

In Fig. 28, can White win? If so, in how
few moves? Simon Norton says it’s better to
ask, “what is the smallest board (if any) that
White can win on if Black is given a win if
he walks off the North or East edges of the
hoard?” Can Omar prove that it's 9x117

Figure 29 shows Leo Moser’s problem: can
White win if he's allowed to make only one
move with the Rook? If you find yourself frus-
trated by this, partition the squares in the first
three columns into the four sets

al,a3ab,. ..
bl,b3.b5,...
a2,ad.ab,...,cl,c3,ch,. ..
b2,b4d b6,. ...

c2cdch,. ..

Simon Norton’s problem derives from an
earlier Kriegspiel problem in which the white
king and rook begin on adjacent locations near
the corner of an infinite quadrant, and the
black king starts at an arbitrary square within
the quadrant. Tom Ferguson has outlined a
mixed strategy for White that claims to even-
tually checkmate the black king with proba-
bility one.

/// //y //
_ %/ /////
/?

Figure 28. Simon Norton’s Problem.
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Figure 29. Leo Moser's Problem.
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Fox and Geese

While the one eludes, must the other pursue.
Robert Browning, Life in a Love.

The twelve good rules, the royal game of goose.
Oliver Goldsmith, The Deserted Village, 1.232.

Figure 1. Playing a Game of Fox and Geese.
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The game of Fox and Geese is played on an ordinary checkerboard between the Foz, who has
just one black or red piece, and the Geese, who have four white ones. The players use squares
of only one color (as in Checkers), and the Geese are initially placed in the squares marked O
in Fig. 2. The Fox is usually placed at X in Fig. 2, but since the Geese seem to have the better
chances, it is perhaps wiser to allow the Fox to choose his own starting square (provided this
has the correct color), and then let the Geese have first move.

Figure 2. The Usual Starting Position.

The Geese move diagonally one place forward—like ordinary checkers they may not retreat.
The Fox also moves diagonally one place, but like a King in Checkers, he may move in any one
of the four diagonal directions. There is no taking or jumping. The Geese aim to trap the Fox
so that he has no legal move, while conversely the Fox tries to break through the bharrier of
Geese so that he can stay alive indefinitely. We can therefore say simply that the first player
unable to move is the loser, the usual normal play convention.

It is the general opinion that between expert players the Geese should win, but even against
most moderately competent players a wily Fox can usually win a game every now and then,
and if we let him choose his starting position, he should be able to defeat most novices for
quite a long time. Perhaps those of our readers who have not met the game should take some
time off to play a few games before reading further.

The question we shall ask and answer in this chapter is just how much of an advantage do
the Geese have in this game? Perhaps we should first of all prove that the Geese really do
have a winning strategy, even when the Fox is allowed the extra dispensation we suggest. In
Fig. 3 we show the five types of position that our own favorite strategy relies on. The O’s
indicate the positions of the Geese, and the X’s indicate particularly critical positions for the
Fox. When the Fox is in one of these places, we shall say that the Geese are in danger.

If the Geese follow our advice, they will play the game as follows. Most of the time they
should play with their eyes closed, so that they will not be alarmed unnecessarily by the Fox’s
manoeuvres. We can offer them a guarantee that whenever they open their eyes the position
will be like one of A, B, C, D, E, possibly left-right reflected, and that all they need do before
closing their eyes again is see whether or not they are in danger. If not, they should make the
moves indicated by the digits before the solidus (/) in Fig. 3, and if in danger, those indicated
by the digits after the solidus. We also show by letters before and after the solidus which type
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A, B,C, D, E of position will be seen next. The indicated moves can be made with eyes closed,
since we can also guarantee that the Fox will never be in the way, and so the Geese need only
open eyes again when the sequence has been completed and the position is once again one of

A,B,C,D,E.

%7 %/ %

a{gz o [
7 %2 ) ffé. 7 7 7
Position 4 28/1234A4 Position ¢ 12A4/3D

/4

7 7%

|

|

. i

Position & 123454/3F F’osmon E 1234A4/34124

Figure 3. The Most Concise Strategy.

It is very easy to prove that the strategy works, when once the Geese have got into posi-
tion A. As an example, we consider the position ). If the Geese have been behaving as we
suggest, they can only have arrived at a position D from a position B or C in which they were
in danger, and so the Fox can only be in one of a limited number of places. In fact he will be

inone of X, Y, Z, T of Fig. 4.

) v | % KA
PO RER 9%, Y
%m %%%,ﬂ%%%
Aﬁﬂ 45 % %5005,
/ﬁgm %Q%%y%%/
YU RS GBS N W

4

4} (4. 2}
/ / . A, / 2 s / e P
% % 7. %/ //// // 0,0 0 %
/J//“ 7// % %o 58 % KK % 5y
o) W88, W55
“w /%;%;%% YW W Y

4

K
—

Figure 4. Analysis of Position D.
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Now if the Geese are in danger (i.e., the Fox is at X), they make a single move and arrive
immediately at position K. So we can suppose that the Fox is at Y, Z, or T, and the Geese are
told to make moves 1, 2, 3, 4, 5. Figures 41,45, 43, 44, 45 show the paosition after each of these,
and show why the next move in the sequence is legal, for in Figs 4; to 44 we have marked
X in every possible place the Fox can be in just before the next move takes place. Since the
position shown in Fig. 45 is of type A, this verifies that the strategy works from positions of
shape D). Note that if the Fox were at T in Fig. 4;, then he lost instantly after move 1, being
trapped at the edge of the board.

We leave to the reader the corresponding discussion for positions of shapes A, B,C, E,
noting merely that since E can be reached only from a position D with the Geese in danger,
we need consider just two places for the Fox in position £, namely that marked X in Fig. 3,
and the place two squares to the right of it. But for positions 4, B, C the Fox may be on any
square of the right color that is above the line of Geese.

How do the Geese start the strategy? The answer is that they can move into a position A
on their first move, unless the Fox chooses the starting position F' of Fig. 5. In this case, we
advise them to make moves 1, 2, 3 and then open their eyes again to behold another anomalous
position, G, from which we can put them back on track by giving them another sequence of
three moves to be performed with eyes closed.

7, % % T

P //’,,/ o
A / 3 /// % /9
o/ /f% 2 5
Position £ 2A/123G Position G 1238B/2318

2

7

Figure 5. The Anomalous Starting Position.

Some Properties of Our Strategy

From the standard starting position, and indeed from any position except the anomalous
position F' of Fig. 5, our strategy leads only to positions in which the Geese never occupy places
in either the leftmost or the rightmost column. This is interesting because most reasonably
competent players like to move the Geese so that they straddle a horizontal row whenever
possible. But if the Geese do this, a cunning Fox can force them into a wider variety of
positions than occurs in our strategy, so that the Geese then need to know a lot more about
the game to be certain of winning. In fact a competent Fox can force the Geese into positions
of all the types A, B,C, D, E, no matter what winning strategy they adopt. However, only
if they adopt our strategy is he unable to force them into any other position in which they
need open their eyes because their action cannot be automatic. Since our strategy is the only
one with as few as five positions in which the Geese need to take a decision, it is the unique
minimal winning strategy.




F What Is the Value of Fox-and-Geese? 673

Many people who think they know winning strategies can be caught out every now and
then by a clever Fox who seduces them into an unfamiliar part of the game. In fact it takes
considerable skill to play the Fox against ordinary players so as to exploit to the full any
deficiencies in their knowledge. We can give few hints here beyond remarking that the Fox
should stay near to the Geese and try to bring them into the middle of the board around
him before stepping sideways to slip through any gap they may leave at either side. The best
starting position is from the square near to the Geese and directly below the X of Fig. 2 (and
so two squares right of X in position F'), but position F' itself is also useful.

What Is the Value of Fox-and-Geese?

So far, this chapter has been copied verbatim from the original 1982 edition of Winning Ways.
That chapter went on to give a proof, which we described as “admittedly rather fluid,” of the
assertion that

“The value of Fox-and-Geese is 1 + 1/on.”

We remained steadfast in that belief until we heard objections from John Tromp. We then
also received correspondence from Jonathan Welton, who seemed to prove to somewhat higher
standards of rigor that

“The value of Fox-and-Geese is 2 + 1/on.”

Who was right? As often happens when good folk disagree, the answer is “both!” because
it turns out that the parties are thinking of different things. The Winning Ways argument
supposed an indefinitely long board, while Welton more reasonably considered the standard
8 x 8 checkerboard.

But why are we so interested in values?

Fox-Flocks-Fox

You can play FFF on an ordinary checkerboard, with the checker kings for the Foxes and four
ordinary checker pieces of each color for the geese. The white geese move upward, the black
ones downward, and the starting position is shown in Figure 6.

With best play, does this game continue forever, or is it a second-player-win in finitely
many moves? What happens if the two Foxes are moved to an alternative symmetric pair of
positions? [Answers are in the Extras.]

Towards Greater Precision

We unequivocally apologize for the fact that the statement of our “theorem” was just as fluid
as its “proof”! In the rest of this chapter we shall try to make amends by giving precise
statements and better proofs of both of these results, and of some new ones. Since the subtlest
arguments are those for the Fox, we have found it convenient to take his viewpoint, and so
have turned the hoard upside-down, putting the “Goosy” end at the top and the “Foxy” one
at the bottom.
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Figure 6. Fox-Flocks-Fox.

The Indefinite Board

How long should the hoard be? As regards the goosy end, it doesn’t really matter: to win
on either board in Figs. 7a and 7b, the Fox must get at least to the topmost row containing
a Goose; but if he is able to do this then he can certainly win, by moving back and forth
between this row and the one above, and so he needs no rows higher than these two (and of
course, the Geese cannot use any such rows).

22—
a b ¢

Figure 7. (a) Indefinite; (b) Definite; (c) 5 off.

What about the Foxy end? The length of the hoard at this end does affect the value,
because many of his escapades need some backfield in which the Fox can maneuver. However,
to choose any particular length merely complicates the play, so in the first instance we prefer
to simplify the game by making the board indefinitely long at the Foxy end too, but to make
the values precise by declaring, nevertheless, that our statement

“When the Fox gets to the level of the highest Goose, the value is off.”

remains true for the indefinite board, too.

The next few sections are devoted to a proof that many values on the indefinite board are
indeed exactly 1 + 1/on, which we abbreviate to 1 + over, or just lover, following our usual
conventions for omitting the + sign. In tables and formulas, we shall often denote over by the
symbol £. Later we shall return to the distinctly more interesting results for definite boards.
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Figure 8. A Garden of Geraniums and Delphiniums.

How the Geese Survive Triumphantly

We show first that the Geese can survive forever in
Fox-and-Geese + Lush Delphinium,

where the latter is a Hackenbush flower consisting of a red stalk of length 2 supporting an
infinity of blue petals. A picture of it can be found in the garden of Fig 8.

Then GOOSETAC, the Geese’s Tactical Table shown in Fig 9, shows them what to do
almost all the time. To follow it, remember that it shows only moves on the Fox-and-Geese
board; every now and then players will hack at the delphinium flower instead, and so appear
to pass on the Fox-and-Geese board. Obviously, if the Fox could pass freely but the Geese
not, then he would be able to win just by waiting for them to be forced to move past him -
but he can’t, and he won’t in fact be able to win.

The typical board in GOOSETAC is labeled by a letter and a number, the number being
the total height of the Geese (Geese in the lowest rank having height 0), counted modulo 8.
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The four symbols ™ on each board represent the Geese; other symbols indicate possible lo-
cations for the Fox. A capital letter advises the Geese to move to the formation in the next
row whose column is headed by that letter, unless it is followed by a digit n, when the next
formation is in row n.

In the first column, the letters A continue indefinitely downwards. The Fox will avoid
positions marked § because he can be trapped next move. It is easy to check that the lettered
move is always possible, and leads to another formation of GOOSETAC in which the Fox is
on a marked square, even if he hacks. If the Fox is on a boxed square at the Geese’s turn, we
would recommend them to resign if they have no more hack moves. Fortunately, when playing
on the indefinite board plus the lush delphinium, we can assure them that they will never need
to resign if they follow “GOOSESTRAT,” their Strategic diagram in Fig. 10 on page 678.

The proof makes use of the fact that there are two types of position, dark ones, in which
the Fox is in a row containing black squares, and light ones, when he is in a row containing gray
ones. Any move by either player on the Fox-and-Geese board changes from one of these types
to the other, and so is either a darkening move, changing from light to dark, or a lightening
one, changing from dark to light.

Since the boxed squares are in the D and E columns, it is only the outward mowves which
pose potential difficulties for the geese. So GOOSESTRAT shows all non-inward moves for
the Geese, and indicates for which of them we recommend the Geese to hack (if they still can).
Of course each Fox move occurs at just one node.

In the absence of hack moves, all Geese moves would be of the same type; all darkening or
all lightening. But the position could only get into column E by changing type twice, which
would involve two hacks, necessarily by the Fox. So for positions in this column it is his turn
and he is out of hacks, so he must have to move from the boxed square, and the Geese survive!

If the Geese were not allowed to hack, then the Fox could get to D0 having used only one
hack (at B1), after which he could pass at D0 and they’d be stuck. But the lush delphinium,
of value —(lover), provides the geese with a bountiful supply of hacks and so the geese can
also survive at A2 and A6.

These arguments verify that the Geese can survive indefinitely in Fox-and-Geese plus the
lush Delphinium, and so prove the inequality

F&G = lover,

where for definiteness the geese formation here is A2, and the Fox can be anywhere beneath
the geese. To establish the opposite inequality, we'll soon turn our attention to the Fox. But
we must first investigate

Eight Exciting Escapades

In Escapades 1-5, Figures 11 and 12, the initial locations of the four Geese are indicated by
the usual symbols, and that of the Fox by a circle. The moves sensible players will probably
make thereafter are shown by numbers, odd ones for the Fox and even for the Geese. The
reader should play these moves out on the board, and verify that indeed they lead to escapes
for the Fox.
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Figure 11. Escapades 1-3.

Can the Geese find some other moves to prevent this? The reader who has played through
these sequences will see that most of the Goose moves are forced to forestall the Fox from
breaking through immediately. For instance if the Geese didn’t make the move to the square
marked 2 in Escapade 1, the Fox would win next move by taking this square himself. There
are some cases where alternative Goose moves seem to offer some hope, but the careful reader
will easily show that in fact none of them can prevent the Fox's escape.
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Fox moves: I, 3, 5, 7, 9, b d,
(Goose moves: 2, 4, 6, 8 a, «c
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Figure 14. Escapades 7-8. In each Case, Geese to Move. Can Fox Escape?

These escapades work not only on the indefinite board, but on definite ones provided the
lower boundary gives Fox enough room in his backfield. The ones we have drawn show the
smallest backfields that will suffice.

Escapade 6, Fig. 13, is a more challenging position in which clever geese are able to foil
any attempt the Fox makes to escape. As some of these lines of play last for more than 10
moves, we number moves after 9 with the letters a,b,c... The reader who plays through each
of these variations may discover a key stratagem which the geese can also apply in some other
positions. The southernmost goose remains in the same location for many moves, forcing the
Fox either to retreat, or to commit himself to trying to pass on either the east side or the west
side. The northern goose begins on a location from which he is able to move to help reinforce
either the east or the west. But this goose must not be committed prematurely. In several
variations, the northern goose arrives on the eastern or western scene just in time to block
the Fox’s escape. In variation 3', the geese might choose to answer move 9 by playing at “77
instead of at “a.” Although this gives a solid formation from which the Fox cannot escape,
it is often not as good a move as “a”, for subtle reasons that will hecome apparent in a later
section.

What if the Fox moves first from starting position of Escapade 67 We'll give the answer
in the Extras. Escapades 7 and 8 in Fig. 14 offer more exercises for the experienced player;
their solutions appear in the Extras.

Escapades 1-5, and some easier ones we'll take for granted, will now help us prove that it's
also true that the Fox can survive indefinitely in Fox-and-Geese plus the lush Delphinium, so
that F&G = lover. They are an essential part of our tactics and strategy for the Fox.

Tactics and Startegy for the Fox
FOXTAC, the Fox’s Tactical Table, is somewhat like GOOSETAC. The Fox is always on a

circled position in each board. If this has a@© inside, it is a bullseye from which he can escape
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FOXTAC (cont’d).
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even if it’s the Geese’s turn, by an escapade so easy that we don’t need to give any further
details. For each diagram, if it’s the Fox’s turn, he should, in order:

1. escape, if on a hullseye, or

2. move to a bullseye, and then escape. Otherwise

3. move to a circle, else

4. hack, and otherwise

resign.

o

We shall show that when playing with the lush Delphinium, the last possibility won't
happen. To see this, one must check that all possible Geese moves (indicated by symbols
at their feet) lead back into FOXTAC, except for those indicated by —, from which the Fox
escapes easily, and those indicated by single digits or exclamation points, from which the
Fox escapes excitingly. Digits correspond directly to escapades (e.g., the digit “2” refers to
Escapade 2; exclamation points indicate other exciting escapades which are very similar to
Escapades 3, 4 and 5.

Notice that no letters except H appear in the H column of FOXTAC. So if the Fox stays on
the circled locations in any H formation, he can escape if they move to any formation outside
this column. If the geese hack, the Fox can respond with another hack. If the geese refuse
to resign, they must eventually move to a formation from which the Fox can escape. The
reader can verify that the FOXTAC table is closed except for those very bad Goosemoves to
Column H.

When it is Goose’s turn, if the Fox hasn’t already won, he stays on a circled location on one
of the diagrams in FOXTAC. One purpose of FOXSTRAT (Fig. 16 on page 685) is to show
that when playing with a lush delphinium, (and having started at an appropriate place), the
Fox will not find himself at an isolated circle with no hack move available. Pairs of adjacent
circles give him no trouble, since he can move between them.

Now the positions having isolated circles are in the outer pair of columns in FOXSTRAT,
and are the only ones at which the Fox will hack, so the first time he is in such a fix, both
his hack moves will be available, and he can use his first hack. Also, in these positions, there
is no Goose move to a non-circled node, so after this hack, the Geese must move to another
such position (or out to H). There are two cases for their moves, which will be vertical in the
figure, say from Y to Z or from X to Y to Z:

Y

N — = — 4

Z
The Fox's two hack moves clearly enable him to survive in the first case. In the second case,
they also suffice, because both moves are of the same type (darkening or lightening), showing




Tactics and Startegy for the Fox

B2 A2
FOXSTRAT
for the indefinite board (C1) Al G1 B1)
FROM TO
Light ———== Dark Row

Dark
Both

Light Row

Both

(branches to H omitted)

Figure 16. FOXSTRAT for the Indefinite Board.
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that he won’t be at the middle node Y at his turn, and can therefore hack again at Z. After
this second hack, the Geese have run out of moves.

This, together with the many easy escapade checks we've omitted, shows that the Fox can
also survive indefinitely when playing Fox-and-Geese on the indefinite board along with our
flower, and so establish the inequality

F&G < lover.
So, combining the two opposite inequalities, we have the exact evaluation
F&G = lover = 1 + 1/on,

where, to be precise, we remind the reader that “F&G” refers to any position in which the
geese are in formation A2 or A6, and the Fox is located anywhere below the geese.

Fox's Play on Definite Boards

On definite boards, the rows are numbered upwards from 0, in octal, and each diagram shown
in GEESETAC, GEESESTRAT, and FOXSTRAT is now labeled with a letter followed by
an octal number of at least two digits. (To avoid ambiguity, we insert a leading zero before
each height less than 8.) Then A2 represents any of the formations A02, A12, A22 A32 ..
At sufficiently large heights, the graphs shown in GOOSETAC, GOOSESTRAT, FOXTAC,
and FOXSTRAT all remain locally valid, with the rows formerly cyclically labeled mod 8
being replaced with a long single sequence continuing on downward. These figures all remain
accurate if the height is sufficiently large to ensure that Fox’s escapes still work. When such an
F&G position is played in conjunction with a trimmed Delphinium, the geese seek to push the
Fox down towards the bottom of the board without hacking any more than necessary, while
the Fox seeks to compel them to hack as often as possible. GOOSESTRAT showed how the
Geese can push downwards without hacking anywhere except at most once at each formation
of type A2 or A6. We will now show how FOXSTRAT implies that he can compel the Geese
to hack at least this often. The bridges shown in FOXSTRAT are the key to proving this.

The Geese can move under the bridge that separates Al and C1 from A2 and B2 only by
playing a darkening move. After several more moves the Geese must either play to a circled
position (from which Fox can win as on the indefinite board) or arrive at A6 or B6. Since
our Fox does not hack from any of the positions in FOXSTRAT which are not circled, unless
the Geese have hacked again very recently, they are now faced with the need to move from
a light position. Since all moves under the bridge from A6 and B6 are lightening, the geese
are unable to pass under this bridge without paying another hacking toll. Continuing this
argument, whenever the geese cross under one bridge in FOXSTRAT, they will be forced
to pay at least one hacking toll before they are able to cross under the next. And since
the accompanying trimmed Delphinium has a stem of length two, the Fox can defeat any
attempt by the Geese to evade these tolls by playing to any of the nodes which are circled in
FOXSTRAT.

So Fox can continue this strategy as long as the position is high enough for his escapade
threats to work. But since the height decreases, this assumption eventually must fail. The
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first failure occurs in H23. If the geese move from H27 to Escapade 5, the Fox escapes as
shown there, but if the geese play the same way on the reflexion at H23, the Fox fails to escape
because of insufficient backfield. Thus in FOXTAC, the goose move from formation D24 to
H23 becomes playable. The template shown in FOXSTRAT provides only an incomplete
representation of the graph relevant to the island containing A31, A30, A27, A26, B25, and
D24, so it is no longer clear that two red stem branches are enough for Fox to win after Geese
cross under the bridge from A32, B32 to A31 and C31. However, above this bridge, there
are no such problems. All escapades work just as in the indefinite case, and if the Geese play
to any circled formation ABOVE A32, B32, then any Hackenbush flower with a red stem of
length at least two is sufficient for the Fox to win. In particular, playing from the higher
circled eritical position of

A32, A36, Ad2, A46.....

Fox playing second can win against a flower of value

2,

o
fr o] =]
-

3
21
respectively, and so we have hounds on the values of all such positions. To show that these
bounds are tight, one of the things we will need to verify is that the Geese moving second can
also win from the higher critical position A32 — 2, a task we defer to the Extras. However,
once this is shown, GOOSESTRAT provides a simple inductive argument that Geese moving

second can also win from each of the critical positions A36 —%, A42 —%, A46 —%, e 90,
subject only to verification of the case of height 32 (octal) (when & = 0) we have proved that

FOX & GEESE = 1 + 27F,

whenever the board is in any of the critical A positions of height 4%k + 32 (octal). We verified
this important case computationally using Siegel’s cgsuite described in the Extras.

The Scrimmage Sequence

The formations in column A play a central role in both GOOSESTRAT and FOXSTRAT.
Like the fundamental ground game advocated by the legendary football coach Woody Hayes,
these formations spread the geese out horizontally, along a line of scrimmage parallel to their
goal line at the bottom of the board. They push the Fox forward, one row per hack. So we call
these solid formations A7, A6, A5, A3, A2, and Al the scrimmage formations. Using Siegel’s
egsuite, we computed the values of all positions with the geese in a scrimmage formation on
all boards of sizes up to 16 x 8. Table 1 shows the values for those positions in which the
Fox is in either location circled in FOXTAC . These values are tabulated according to a single
parameter, n, called the altitude. This altitude is defined as the sum of the row-ranks of all
five animals. It is most conveniently expressed in decimal.

For all values of n exceeding the lower bounds shown at the bottom of the table, this
same sequence also gives the value of the Fox in either circled position of formations FO and
B0. All of these formations correspond to nodes near the centre of the GOOSESTRAT and
FOXSTRAT figures. In prior sections, we evaluated critical positions which all have altitudes
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units— 9 8 7 6 b 4 3 2 1 0
tens |
33 33 33 1 33 1 17 17 . 1 2] 17 9,
50s 2 % B wHn w* % 1wt 1w st s
2] 9 9 a.19 9., 0 il i d.15 3.
40s LA & < S S L S L F O
30s 2 g 2 2 2 2 2« 2 262 2
20s 2e 2e 2e 2e 2e 2e 2s 2e 2e 2s
10s 2e 2 2e 2e 2 D 2 NOTE 3* 3
00s 3¢ 2% 2 312 3 NONE 1 0 NONE NONE

NOTE: Ambiguous; Al3 = g*|2, but Al2 = %
Values of A3, A2, Al as function of altitude in decimal

and of FO (if altitude > 12) and of B0 (if altitude > 32).

Table 1. Values in the Scrimmage Sequence, s[n|; n = Altitude.

congruent to 2 mod 5, and we proved the correctness of that column of the serimmage sequence.
Omar may wish to extend these arguments to prove the correctness of the scrimmage sequence
for all large values of n.

The scrimmage sequence is naturally partitioned into three regions: a high region, “Wel-
ton’s region” of value 2over, and a low region. Each of these regions is discussed further in
the Extras.

Values of the Initial Positions

On the J x 8 board, the game conventionally begins from an initial formation in which all
four geese occupy the highest row. Usually the Fox starts on the lowest row. In decimal, the
height and initial altitude are both 4.J — 4. But in some variations of the game, the Fox is
allowed to pick another starting location, sometimes subject to one or more constraints. When
8 < .J < 17, we noticed that the values of all positions on the bottom J — 7 rows of the bhoard
belong to the early sequence shown in Table 2.

Based on considerable computational evidence, we close this chapter with the assertion
that, with appropriate modifications and refinements detailed in the Extras, this early sequence
provides the precise values for all positions in the initial formation of a J x 8 board for every
J > 7. The Extras contain more details about our asserted values for all Fox positions with
geese in their initial formation on the top row of any sized board.

Rather than the usual route of starting with small numbers and working upwards, we have
instead come here via a true top-down route: we started at infinity and worked downwards.
Part of the reason this has succeeded is that the asymptotic values include many numbers,




Values of the Initial Positions

units— 9,4 3,3 7.2 6,1 9,0
tens |
lo 60s a2 32 32” 16/32* 16
. 1z 17 17, 9,17 9
hi 50s 6" 16 16 5|16 8
R (1 9 9 9, 52 5
lo 50s Sk < 2 = | Sk "
: 5 5 5, 315 3
hi 40s Z* ) TF §|Z* 5
FY 3 3, 3
lo 40s Sk 4 Tk 2|24 2
hi 30s 2% 2 D 2ish 2ish
lo 30s 2ish 2z 2z 2e 2e
hi 20s 2e 2¢ 2e 2e

Table 2. Values of All Early-Stage Positions, e[n];n =Altitude.
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and the temperatures of the other positions in the scrimmage sequence tend to increase with
decreasing altitude. So, the route we have taken may still be viewed as “bottom-up” from
a thermal perspective. We started by building a foundation consisting of important stable

positions and then related other nearby positions to them.




Extras

Sophisticated New Software

All of the calculations in the Fox and Geese chapter of the first edition of Winning Ways
were done by hand. Indeed, virtually all calculations in all volumes of that edition were
done by hand, the only exceptions being some very specific nimber recursions such as those
used to explore Grundy’s game (WW Chapter 4) and certain sequences of Kaylesvines (WW
Chapter 16).

David Wolfe introduced a much higher level of computer sophistication to the combina-
torial game theory community in the early 1990s. His pioneering toolkit is able to compute
and manipulate canonical forms symbolically. It understands the basic concepts of numbers,
nimbers, infinitesimals, atomic weights, cooling, heating, overheating, and thermography. It is
interactive and relatively easy to use. Wolfe's toolkit supports the analysis of several specific
games, including Domineering and Clobber. It also provides a platform which others have
extended to other specific games, including Toads & Frogs (by Jeff Erickson), and Konane (by
Michael Ernst).

The source code has long been publicly available and accessible online on Wolfe’s website.
By 2002, it had attracted hundreds of users, all running on Unix-based machines.

In the fall of 2002, Aaron Siegel began an ambitious effort to write a new suite of game
theory software from scratch. His programs are all written in Java, with a great degree of
generality and portability. He has also given considerable attention to software engineering
issues such as cache management, allowing his toolkit to handle larger problems faster. The
resulting suite supports all of the features in Wolfe's toolkit and a number of important new
ones, including the capability of handling loopy games like Fox and Geese. Siegel devised and
developed his own new algorithms for handling such games, based on the concepts and theories
found in WW Chapter 11.

We have used Siegel's program to crosscheck some of the results presented in this chapter,
and to discover some of the others. The current [spring 2003] version of Siegel’s toolkit can
compute the canonical form of any small collection of Fox and Geese positions on a 14 x 8 board
in a few minutes, and on a 16 x 8 board in about 90 minutes, running on a 2.4 GHz Pentium
4 with 512 MB of RAM. With our own efforts to analyze and understand Fox and Geese, we
have become one of the first users of Siegel’s new cgsuite. Documentation and diagnostics are
being upgraded continually. David Wolfe has contributed advice, and a group in New Zealand
led by Michael Albert is working on some additional graphical components.

Some readers will no doubt be eager to use this wonderful toolkit for further explorations
of both Fox and Geese and of many other games. It is publicly available and can be accessed
via http://cgsuite.sourceforge.net

One of our first uses of this toolkit was to confirm the fact that the value of the critical
position with Fox in the higher circled location of A32 is 2, thus completing the proof of one
of our new theorems.
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7 and 3 6 and 2 5 and 1 4 and 0
A B F H A B F H A H A B F H
5 5 5 3 3 a 3
i i - i 1- - A sH- 5 H -
lo 40s 5 . a5 & 3 3 3, &
] ] - vy 3l - - 2 - 2 2* P -
iy - - 4 B 1|- - P - 2| — 2 2 -
hi 30s B : s ;- .{z
3 3 - 25 5= - - 2 - 2 24 24 -
24 2|— - 2 2 1- - 2 - 2 2 2 -
lo 30s
2 2 - 22 2|— - - 2 - 2: 2 % -
2 2| g - 2 2 1|— - 2 1 2: - 2 2 1+
hi 20s A
2= 2 2422 - 22— - - 2 1s 2: 2 2 1
2= 2| 3 1 2 2 1]— 0 2 1 2e|— 2 2 1+
lo 20s )
2= 2 2L2)E 241 2= 32— - 2= 1+ 2= 2 2 1
2= 2| 32 1 2 2 3- 0 2 2 - 2 24 2
hi 10s o
2z 2 2 2|1 2= 92— - |0 2. 9 2 2 3)2¢)2
2 B 24 1 2L 4 I E 0 27 2 2e|— 29 2 1
lotos | _, ®, . o l _
ale2 2ed- 2 2epn | o2ke d- Se- 10 3+2L 32 26 2= 21 21
24 2| i 0 2 2 1 3 1 - 1 2 0
hi 00s . .
2 22— 3212 1o 32 32 1=]1 =lo
1 |- 1
lo 00s

Table 3. Values of Fox's Tactical Diagrams with Double Circle. (Value at Higher Circle Listed above
Value at Lower Circle.)

T and 3 G and 2 B oand 1 4 and 0

D D E G B C D F G D E G
lo 40s 1 1|— 1] 1] 1 fL|— 1 1 1 4] 1] 1]
hi 30s 1 1]- 1] 0 1 24| — 1 1 1 1] 0 0
lo 30s 1 1|- 1] 0 1 2z|— 1 1 1 1] 0 0
hi 20s 1 1|— i ] 2 2¢|— 1 1 1 19 ] ]
lo 20s 1 1|- 21 0 2 2| — 1 1 1 8 0 0
hi 10s 1Ls 1l— 2k 0 24 2|— 1 3 1 2 0 2
lo 10s 2= 1]— 1= 2|3 2 24| — 1 2 1 1 0 1
hi 00s 11 1|— 17 1 1 1 1 1 4] 4]

Table 4. Values of Fox’s Tactical Diagrams with Single Circle.
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Values of FOXTAC Positions

Tables 3 and 4 show the values of most circled positions in FOXTAC, as computed by Siegel’s
cgsuite. In most of these formations, these circled positions are among the best locations for
a Fox who has neither escaped nor is threatening an imminent escape. All of the exceptions,
shown in the two boldfaced values in each of the columns of Table 5 occur only on rather short
boards.

altitude
mod 5 3 2 0
D F E B
hi 20s 1 2 1 2
lo 20s 1 D 1 2
hi 10s 2¢|3 2% 1x 1x
lo 10s 2 S 3 2
hi 00s 1 2% ls 2

Table 5. Values at Locations toward Centre from Higher Circle. (Each Boldfaced Entry < Circled
Outsider)

These tables prove very helpful in the next section.

Regions of the Scrimage Sequence

High Region

We have observed contests between two strong players starting from one of the very high
scrimmage positions played in conjunction with the negative of a Hackenbush string of equal
or nearly equal value. After the first five pairs of consecutive moves, the position reverts to a
reflected translation of its initial position. The five geese moves consist of four advances and
ohe pass; the five Fox moves consist of two advances and three retreats. The formation’s height
has decreased by four; the position’s altitude has decreased by five, and the geese have used
up one of their Hackenbush petals. Why can good players do no better than this? Because
for each relevant formation of the Geese, the locations circled in FOXTAC are as minimal as
any others. So the Fox loses nothing by staying within the circled positions. And if he does
so, our prior FOXSTRAT arguments have shown that the geese cannot play to any formation
not shown in FOXSTRAT without allowing the Fox to escape.
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The stops of the values which appear within the high region are all of the form
1+27%

The transition between the high region of the serimmage sequence and Welton's region of value
2over happens at altitude 31. This position occurs with the geese in formation A32 (octal)
and the Fox in the lower circled position. We view the value of this position as a switch of
temperature over. When played in conjunction with the Hackenbush string of value -2, the
mover can win. If Fox moves first, he advances and the geese are then unable to pay the toll
necessary to go under the bridge, so they must move outward from the central nodes to a
position from which they will lose within at most another few moves. But if the geese are able
to play from this position, they go under the bridge to enter the next region.

Welton’s Region of Value 2over

This region was explored extensively by Welton. All values in this region exceed the number 2
by the loopy positive infinitesimal £ called “over.” This infinitesimal exceeds any finite integer
multiple of UPs. Its persistence for so many altitudes may be attributed, at least partly, to
the fact that it satisfies the following broad range of equalities:

e=0lc=¢le=c+ec=¢ex

Evidently, £ is an idempotent. Although it would be absorbed by any of the idempotent
thick stacks of coupons discussed by Berlekamp [2002], it has sufficient vim to absorb any
conventional infinitesimal such as fror .

In Welton's region, the appropriate Hackenbush companion is Welton’s Delphinium, which
has an infinite number of blue petals atop a red stem of length 3. Our strategic graphs for
positions in this region differ only very slightly from the templates shown in FOXSTRAT and
GEESESTRAT, but the difference is quite important: Column H is no longer disastrous for
the Geese. This is because the bottom of the board is now close enough that the Fox can no
longer escape by Escapade 5. So the line of play from formations A26 to B25 to D24 to H23
is not disastrous for the geese, but only mildly disadvantageous. Fig. 17 shows the portion of
FOXSTRAT between the bridge entering C31, A31 and the bridge exiting from A26. The first
major difference from the template of FOXSTRAT is the presence of some new nodes H25,
H24, ete.

Another major difference is that the appropriate Hackenbush companion, Welton’s Del-
phinium, has a longer stem. So there are many more nodes from which the Fox can win by
hacking. All such nodes have been circled. In both Welton's region and the low region, we
advise the Fox to consult the value tables at every move, and if he can win by hacking, he
should prefer to do that rather than to play. Some examples of positions in which he MUST
be sure to do this are shown in Fig 18,

By using Tables 3, 4, and 5, we can easily construct the correct graph corresponding to
FOXSTRAT. The region of FOXSTRAT between the bridge into A25 and the bridge exiting
A22 is an exact translated reflexion of Fig. 17. The region hetween the bridge into A21 and
the bridge leaving A16 is almost an exact translation, but it has exactly one exception: the
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(C31) A3l

Figure 17. Fox’s Strategic Landing Plan {Darkening and Lightening Omitted) .

node H15 is not circled. The next lower region, beginning with A15 is quite different and lies
entirely outside of the 2over region.

We gain the most insight by watching a contest between two expert players starting with
Welton’s Delphinium added to an F&G position in which the Geese are in the scrimmage
position A31. Fox plays according to a slightly amended version of the FOXSTRAT we have
studied previously; the only difference heing that before playing, he should consult the tabu-

s e ] ] G -
' 7, | U A V2, U
7 AV 7./ A V) 7
A201 ¥ 20 7 |2 7 At “
2 { i Z f/’ 7 //
7 U 7 %M % 7/ 2L VA2 17
F17, altitude 17 A15, altitude 15 A13, altitude 13 A07, altitude 7

Figure 18. Some Short Positions with Value 2.
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Figure 19. Journey from H15 to Fox's Safe Dancing Haven.

lated values and HACK instead of playing whenever that would permit him to win, as it now
often does because the three-branch stem of the Hackenbush flower provides him with more
possible hacks. Smart geese refuse to move into any off-centre formations. They instead elect
to play either a passive or an aggressive strategy. If passive, they simply remain in a formation
such as A31, A27, or A26, and hack at every turn. Fox can do no better than engage in his
two-step dance, back and forth between his pair of circles. The total position repeats again
and again, and the game is drawn.

More aggressive smart geese may attempt to force the Fox down to positions of lower and
lower altitudes. They can succeed in pushing from A31 thru A30 to A27 to A26. Although
they may then need to pay a toll to get under the bridge to A25, this poses no problem because
Welton's Delphinium has an infinite number of blue petals. After playing one of them as a toll,
the geese push on under the bridge to A25 and then continue thru A24, A23, and A22, then
payving another toll before moving on to A21. However, after crossing under this bridge, they
find themselves in new territory. Several more of Fox's former escapades now have insufficient
backfield, and in particular, formation H15 is better for the geese than the central formation
A15. So the dominant strategy for the aggressive geese is to push from formation A21 thru
A20, A17, and A16, to H15 and then, after hacking if necessary, off the charts thru Fig. 19 to
Fig. 20. But this is as far as the smart aggressive geese can go; they are, at last, compelled to
resort to the passive behavior of hacking at every turn while the Fox remains alive and active
in his final safe dancing haven. If the geese play any more aggressive moves from that position
+ Welton's Delphinium, Fox can win. So we may regard all of the positions in Welton’s region
as predecessors of this simpler position we call Fox’s Safe Dancing Haven.

In almost all of the positions in Welton's region, the geese have a dominant move to another
position of value 2over. However, canonical play requires them only to reach a value >= 2.
Figures 21 and 22 show how a competent human player can do this with only a very few minor
amendments to GOOSESTRAT and GOOSETAC.

Value =2z a=2: b= 1=z
Figure 20. Fox’s Safe Dancing Haven.
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“et al.” means:

A13 =2 vs. higher circled Fox

Al3>2 wvs. lower circled Fox A 13
H15>2e et al.
Claims (with Fox in higher circled position):
Al6>2=2 A22> 22,

A26=2:2; A32=2,

b2

Figure 21. Geese’s Strategic Landing Plan (Inward Branches above C13 Omitted).
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Figure 22, Tactical Amendment of Geese’s Landing Diagram A16 .
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Lower “Delta™ Region

Like a major river that fans out into a delta before flowing into the sea, good lines of play fan
out into many variations in the lower region. Not only do the serimmage values in Table 1
on page 688 no longer apply to formations of types F0 and B0, but there is even one case (at
altitude 12) where A12 and A13 have different values. As shown in Table 5 on page 692, there
are also now some positions with values smaller than the locations circled in the templates
shown in FOXTAC.

In short, patterns that prevailed at higher altitudes fan out into a plethora of special cases
in the lower region. Fortunately, this region is not only small enough that all values can be
computed very quickly by Siegel’s cgsuite, it is also small enough to have been mastered by
some human experts without any computer assistance.

Initial Values

Even when the geese are arranged in one of their solid serimmage formations, if they are near
enough to the bottom of the board, it is no longer clear which are the best locations for the
Fox. So it may be useful to tabulate values of all Fox locations, as shown in Figs. 23 and 24
with the geese in their initial F4/F0 formation at the top of a board. Notice that these values
assume an indefinite top of the board, as in Fig. Ta, so they provide answers to questions such
as the Fox-Flocks-Fox problem of Fig. 6. Allowing the Fox to be trapped on the fop row of a
fixed-sized J x 8 board would make some small-board initial positions more advantageous to
the Geese.

Some interesting patterns will appear on larger boards which aren’t yet apparent in Wel-
ton’s region.

Parity in the High Scrimmage Region

It is useful to regard all of the nodes in the FOXSTRAT and GEESESTRAT graphs which
have values specified by the scrimmage sequence as forming the high central region. Nodes
circled in FOXSTRAT, from which a competent Fox will not allow the geese to return to the
central region, are viewed as having left this region.

The stops of the values which remain within the high scrimmage region are all of the form

1427k
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5 x 8 BOARD

-~ -~ -~ -~
3x|2e 2¢ 2 24
2 2 2x|2e 2
23 %|2E %* %*
where z; = 5« || 4, 4% ||| % 3]|2¢ ||If 3*|2¢,
2o = 4,4x || £|3)|2¢, and z3 = Z|3||2¢
4 x 8 BOARD
-~ -~ ‘ -~ ~
4 % %* 2 312
% %*|2* 2 ]
3| |7 g2 |42
where z; = 6¢||3|2
3 x 8 BOARD
- - -~ -
2 2 Ix de
6|2z 2¢)2 4/3]|2 de|3*

2 x 8 BOARD

Figure 23. Initial Values in the Low Region.

It is useful to regard this number has having the same PARITY as the integer k. Although the
value of 1 is a canonical Left follower of these stops, its appears only on outer nodes external
to the high central region. So within the high central region, every position has an even or
odd value corresponding to the parity of its height. Even positions have only odd followers,
and odd positions have only even followers. Adding a STAR changes the parity.
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8 x 8 BOARD

~ -~ -~ -~
2e 2e 2 27

2e 2e|2 2% Z
2e 2 29 29

2z 2z 2e 2e
2e 2e 2e 2e

2e 2e 2e 2e
2e 2z 2e 2e

where z; = 22|27 and 2, = 2¢|2%

7 x 8§ BOARD

-~ -~ ~ -

2e 2e 2e 2e
2e 2e 2g 2e

2z 2e 2e 2e
2e 2e 2e 2e

2e 2e 2z 2e
2e 2e 2z 2e

~ -~ ~ ~
2e 2e 2e 2e

2= 2e 2e 2
2e 2e 2e 29

2e 2e 2e o
2= 2z 2= z9

15 .1 5
where 21 = 3|3%(|2¢ and 23 = 5%|2¢

Figure 24. Initial Values in Welton’s Region.
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~ ~ [ - ~
2| E;* % 2 sk

z1 %* 2% l% 2
29 2|34 25 25

2e 2 2 2
2¢|2 D P P

2e 2e|2% 2|2 22| 2%

T L o . R » “p

2e 2e 2e 2e

where z; = 25||2}%* and z, = 28|%*

Figure 25. 9 x 8 Values.

Early Values

Like the scrimmage sequence, the early sequence also has a high region and a Welton region.
At the lower part of the high region, which is accessible by computer calculations, the early
values are observed to be related to the scrimmage values by the equation

e[n] = s[n — 5]*

where n is the altitude of the position p. If the game begins from a conventional initial position
with the Fox located near the bottom of a very tall board, we assert that all early values are
given by this formula. There is an intermediate region where the Fox is closer to the geese
than these early positions, but further away than the scrimmage positions. We have found
that almost all such positions have values which can be conveniently expressed as

v(p) = b[rn — d(p)] if d is even

or

v(p) = b[n —d(p)] * if dis odd.

Here b[n] is the backbone sequence of values. For n > 31, we define it as

although we will subsequently define it slightly differently at certain lower values of n. The
integer d, called the altitude decrement, depends on local properties of the position, indepen-
dent of size of the backfield between the animal on the lowest occupied rank and the bottom of
the board. The values of d for all sufficiently high initial positions appear in the F4 Altitude
decrement table shown in Fig. 27.
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1 I L ! _1 ‘ da 7 1da 570 Sa |
where z; = 2]|%|3’w and zy = 2#|3x g 7

Figure 26. 10 x 8 Values Figure 27. I'4 Altitude Decrements.

Of course, Fig. 27 can be reflected into the FO formation.

At sufficiently high altitudes, the abc's in this table can be ignored; only the numbers
matter. As indicated above, these numbers tend to range from 0 at the scrimmage positions
to 5 at the early positions when the Fox is still far enough below the geese. Since, after
normalizing the parity by adding * to odd positions, the backbone values decrease with large
and increasing altitude, n, the Fox favors low values of d; the geese, high values. Evidently
a smart Fox will be reluctant to move to the square numbered 6. Each square labelled with
the letter x has exceptional asymptotic values which do not occur in the backbone sequence.
These tend to be locations a wise Fox will avoid. The special rules for handling these unstable
exceptions will be presented in a subsequent section. But first we look more closely at the
initial positions at elevations between 31 and 15, a range which is very common in popular
play on the 8 x 8 checkerboard.

The abc's to Trifurcate the Two-Ish Transition

Within the high region of altitudes 32 and higher, the backbone sequence is defined to be equal
to the scrimmage sequence, and they give the values of all circled positions of formations A3,
A2 Al, B0, FO, and their reflexions. However, at altitude 29, these formations have different
values: A31 = F30 = 2¢, but B30 = 2. So A31 and F30 clearly belong to Welton’s region;
yvet B30 clearly does not. Since it violates the parity principle, B30 cannot be considered part
of the high region either. So it is not unreasonable to regard altitudes 31, 30 and 29 as the
transitional region between the high region and Welton's region. In the transitional region, we
define the backbone sequence to include this trifurcation (See Table 6).

We can then use Fig. 27 to compute values of lower positions. If the adjusted altitude,
n({p) — d(p), falls in the transitional range, then we use the letter in Fig. 27 to pick the correct
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! 30 29
a 27 20 22
b 2e|2fx||2  2¢|21%
¢ 2|2 2e 2e

Table 6. Truncating the Two-ish Transition.

value of s. Of course, we must still adjust its parity by adding a star or not according to the
parity of d(p). Omar may verify that, with these conventions, the values obtained from Fig.
27 match those we have reported from Siegel's cgsuite whenever the translated altitude lies in
the transitional region.

Extending the Backbone to Lower Altitudes

Below the transition region, we define the backbone values as
b[n] = 2z for 28 = n > 17.

This is Welton’s region. Below Welton's region, we define two more backbone values as

E

bl6 = Zx|20over and bl5 = 2x .
Omar can now verify that all of the numbered entries in Fig. 27 yield the same initial values
as we have reported from Siegel’s egsuite for boards of sizes 7 x 8 through 10 x 8. The values
it gives for the 6 x 8 board are not inconsistent, although it fails to define the values for a few
exceptional locations on this board.

Although the decrements we have contrived in Fig. 27 and the backbone sequence give
all the correct values of all initial positions on boards 7 x 8 or taller, many of these contrived
decrements are not unique. They should be regarded primarily as a shorthand way of sum-
marizing the much larger quantity of data needed if each translation of the F4 formation is
treated separately.

For formations of height greater than 36, none of the abc’s has any relevance, because then
the altitude, which is the height minus the decrement, always exceeds 31, the largest altitude in
the trifurcated region. So beneath the lowest row shown in Fig. 27, all locations are occupied
by an unlettered 5.

Early Values of Other Formations

Fig. 28 shows the decrement tables for several other common formations. Like F4, all of these
tables also apply to the reflected positions. And like F4, all of these tables also have only
unlettered 5s below the lowest row shown. Squares left blank all have very hot values, with
off as a Right follower. From Welton's region on up through the highest position that can fit
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Figure 28, Altitude Decrements for Some A’s and B's.
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onto a 14 x 8 board, every value obtainable from any of these tables agrees with those obtained
from Siegel’s cgsuite, and we conjecture they remain valid at arbitrarily large heights.
Evidently, when wise geese can choose between a pair of formations such as A2 and B2,
they do best to take the Fox’s altitude into account, even when he is sufficiently distant from
the geese that escaping is not an imminent threat. Often a “just-in-time” defense yields a
higher value for the geese than a prematurely “solid” position.
It is convenient to define the “separation” of a position as the minimum gooserank minus
the Foxrank. When the separation exceeds 2, the M formations are the best we have been ahle
to find. As wise geese have known for ages, the fastest and safest ways to move southward
with minimal effort is to rotate around between M4 and M0. How often does the lead goose

change?

Migrating geese can play with their eyes closed as long as the separation exceeds 2. Then
they may need to concentrate on winning whatever escapade(s) the Fox attempts, such as

M3

M5 M4
7 5 5
5 | |x8 | 6el 6b 5
5015 A7l Ad7al  15a
Sal |5¢c :
A5a 5a Ha
5 Rl
5 5 5
51//5

Figure 29. Migrating Geese Formations and their Altitude Decrements.

M2

S
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Escapade 6 on page 680. Once the Fox is this close, temptations to make suboptimal moves
(c.f., the questionable move in Variation 3’ of Escapade 6) are rare and easily avoided. In
our apinion, it is more difficult to learn how to play other geese formations well because they
require the geese to make important decisions earlier, when the Fox is further away and the
consequences of the next few moves are harder to foresee.

Resolving the Exceptions

Entries beginning with an “z” in these decrement tables correspond to locations slightly hotter

than any values which appear in the asymptotic backbone sequence. There is a technical sense
in which they are unstable. However, they all flow into the backbone sequence within a very
small number of moves, and we use this fact to represent them in the following convenient
shorthand notation:

rl = “9¢|2a”

x2 = “7c|0”

x3 = “be|— 1"

rd = “6ec] - 17

x5 = “5c|| — 2|oft”
6 = “3c||0|off”

x7 = “Tc||0]off”

x8 = “8¢|||3¢||0|off”

So, for example, consider the square marked “z1” near the top right corner of Fig 27. On a
10 x 8 board, its row-rank is 7, two below the geese on rank 9. The height of the position is
4 x 9 = 36, and the altitude is 36 + 7 = 43. Following the shorthand, we write the value of
this position as

b[43 — 9]|b[43 — 2],

(where the * is added to the Right follower to maintain parity)

5
Sl

= b[34]|b[41]+ = 2|2

Since both immediate followers are an odd number of moves from the current position, we
must add a star to each of them to maintain parity, in addition to the star which is added to
compensate for any odd decrement of the index.

In Welton's region, some of these expressions simplify because of confluence caused by
multiple appearances of the value 2over. Asymptotically, several of the referenced backbone
values are switches. In particular, z1 and 23 asymptotically represent the same 3-stop; 22 and
x4 both yield a 2-stop hotter than any comparable backbone value; 5 and x6 yield 3-stops
if off is regarded as the Right stop of the Right follower; and x7 is a 4-stop with the same
property.




F Museums 705

When a decremented index falls in the trifurcated range, the abe letter specifies which value
to select, allowing these formulas to remain valid down into Welton's region. In the F4, A and
M formations, values and formulas remain valid all the way down to altitude 15.

The B2 formation is unusual in several respects. Not only does it have a relatively high
number of locations with exceptional decrements, its higher circled Fox location, marked with
7" in the decrement table, has values which agree with the backbone sequence (decremented
by 0) at all altitudes above 31, but has the value of 2 rather than 2¢ at altitudes 26 and 22.
So this sequence of B2 positions has no Welton region. It is the only such location in any of
the decrement tables shown in this book.

We assert that all of the values obtained by applying our decrement tables are valid even
at arbitrarily high altitudes. Although this must still be regarded as a conjecture, it is closely
coupled to a scrimmage sequence which is solidly anchored (at all altitudes congruent to 2
mod 5) to an infinite number of points for which we earlier gave a complete proof.

Museums

Why Museums Contribute Nothing to Current Production Quotas

Anyone hoping to become a true Fox-and-Geese + Hackenbush expert must surely learn
to play competently from the initial geese formation on any size of board, with the Fox at
any initial location, and when accompanied by any Hackenbush position. All of the material
we have presented in this chapter thus far has been directed towards that objective. Some of
the positions we have studied have heen unstable in the sense that they occur only within a
reversible sequence between two stable positions. Good players soon learn to avoid spending
much of their time worrying about the values of such unstable positions, which have canonical
followers too hig or too small to have any effect on the more fundamental stable positions
between which they appear. Like professional Go players, they soon sense which moves “have
sente.” They waste no further effort detailing how badly the opponent can be trounced if he
fails to respond to such a move.

So, although there is a sense in which, with considerable assistance from Siegel's egsuite,
we have “solved” all standard versions of F&G + H, we do not know the value of a totally
arbitrary position, in which all four geese as well as the Fox might be placed anywhere on
a large board. We have shown that from any conventional starting position, rational players
would never reach such a state. Like the Garden of Eden, such a position can exist in our
world only if it was created that way before any other history began.

Why Museums Provide So Much Artistic Attraction

Artists and mathematicians often find considerable beauty in rare objects. Our own collec-
tion of Fox and Geese museum pieces is presented on the following pages. See for yourself and
admire! But we must confess that many of our museum pieces are not genuine originals; they
were mere copies taken from a larger museum discovered, collected, and arranged by Aaron
Siegel. A weblink to his F&G museum may be found at http://cgsuite.sourceforge.net
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Solutions to Problems

1. Fox-Flocks-Fox. In view of the values of the initial positions on the 4 x 8 board in Fig. 23,
second player can win in all-but-one of the 12 possible symmetric pairs of initial Fox positions.

2. Escapade 6 is the Migrating Geese Formation M3. If Geese move first, they must refrain
from Migrating to Formation M2, because the Fox is too close. Instead, they can begin by
moving the eastern goose southeast, giving them a one-move advantage in all variations of

Escapade 6.
3. Solutions of Escapades 7 and 8 appear in Figures 30 and 31.

A

-
"
N

9w o
S w7

8@4, 10@2, 120Q), etc.
Figure 30. Solution to Escapade 7: Fox Escapes from Opening of 5 x 2 Cage. But without Bottom
Row, Geese Could Play 5@6a to Win More Easily.
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Figure 31. Solution to Escapade 8: Another Variation. Clever Geese Thwart Fox’s Attempt to Escape
from Entrance to his 4 x 2 Cage.
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Open Problems

1. Define a position’s span as the maximum occupied row-rank minus its minimum occupied
row-rank. Then quantify and prove an assertion such as the following: If the backfield is
sufficiently large, and if the span is sufficiently large, and if the separation is sufficiently small,
and if the Fox is niether already trapped in a daggered position along the side of the board,
nor immediately about to be so trapped, then the Fox can escape and the value is off.

2. Show that any formation of three geese near the centre of a very tall board has a “critical
rank” with the following property: If the northern goose is far above, and the Fox is far below,
then the value of the position is either positive, HOT, or off, accordingly as the northern goose
is closer, equidistant, or further from the critical rank than the Fox.

3. Welton asks what happens if the Fox is empowered to retreat like a bishop, going back
several squares at a time in a straight line? More generally, suppose his straightline retreating
moves are confined to some specified set of sizes. Does {1,3}, which maintains parity, give him
more or less advantage than {1,2}7

4. What happens if the number of geese and boardwidths are changed?

Maharajah and Sepoys

As we said in the Extras to Chapter 19, there are very many games involving encirclement,
often mixed with various forms of capture. The name Fox and Geese, for example, has also
been used for various games played on the English Solitaire board (Chapter 23) a couple of
which are described in the Extras to Chapter 19. Most of these games are typified by a
considerable numerical imbalance between the opposing forces. This is compensated by much
greater mobility of the numerically inferior pieces. An extreme example is Maharajah and
Sepoys which is played like ordinary Chess. White has a standard set of 16 pieces, starting
from their usual positions, while Black has a single piece, the Maharajah, who starts on any
unoccupied square and can move like a Chess Queen or a Chess Knight. The object of both
sides is checkmate, of either the White King or the Maharajah. As in most of these games the
Lord is on the side of the big battalions, and White wins with correct play.
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Hare and Hounds

I like the hunting of the hare
Better than that of the fox.

Wilfred Scawen Blunt, The Old Squire.

The French Military Hunt

B

Figure 1. The French Military Hunt. Hare and Hounds on the Small Board.

This little game is very like Fox and Geese. It features a hunter whose three hounds (dogs) try
to trap a hare (rabbit) on the board shown in Fig. 1(a). If you can’t persuade enough animals
to make the right manoeuvres, you can play with four coins on the nodes of the equivalent
board shown in Fig. 1(b). It becomes more interesting on the larger board of Fig. 2. At each

m
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turn the hunter moves any one hound to a neighboring empty place, and the hare makes a
similar move. However the hounds, starting from the top, may not retreat, although a hound
may go back and forth horizontally as between e and f in Fig. 1(b). The hare is completely
free to advance or retreat or move horizontally. The hounds win by trapping the hare so that
he cannot move at his turn. If the hounds fail to advance in ten consecutive moves, the game
is usually declared a win for the hare.

L
7L

6L

8
iIC| 6R
41 S R
AC
2

3L 3R

iL IR
OL {IC| OR

O

~1

N (@ N[l N (8 N

NOE N8 N (g N
= [en] A (k) ~= |k 1| A

Figure 2. The Larger Board, with Figure 3. The Larger Board,
Four Types of Place. Numbered for the Trace.
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Two Trial Games

If you want to see how the game goes, first set up the board and watch an expert hunter
against a novice hare:

hounds: abd c¢bd fbd fed fhd fhg fhj ihj (wins)
hare: k i i g j i k

First game.

The chase looks so easy that the novice decides to direct the hounds in pursuit of an expert
hare:

hounds: abd «¢bd fbd fed feg fhg fig eig fig fij
hare: k i i h k i k j k h

Second game.

and now the hare will escape by e or f.

If expert hounds chase an expert hare on Fig. 1, who wins? And what if the hare makes
the first move? Or starts from a different place? (See the Extras.) And (when you’ve become
more expert) what about Fig. 37

History

According to Lucas the game (on Fig. 1) was popular among French military officers in the
nineteenth century. Some say it was invented by Louis Dyen; others attribute it to Constant
Roy. It was solved by Lucas (1893) and Schuh (1943) and popularized (again) by Martin
Gardner (1963). Schul’s analysis was based on a list of 18 classes of winning positions for the
hounds (reproduced in the Extras) and he recognized that “the opposition” plays a key role,
but he had no exact definition for it. In a later section we’ll give a definition which simplifies
the game on Fig. 1 and also allows us to solve that on Fig. 3.

The Different Kinds of Place

Let’s look at the board more closely. There are really two types of octagon: central ones (T
in Fig. 2) and side ones (Z). There are also two types of square: central squares (S) and side
squares (W). Except near the very top or bottom of the figure, each T or Z is next to at least
one place of every other type, but each W or S is only next to octagons, T and Z. Since W
and S are never adjacent, it's sometimes convenient to lump them together into a single class,
N. Of the three types T, Z and N, every place, even the ones at the top and bottom, is next
to at least one place of each other type, but to none of its own type. The letters correspond
to remainders after division by 3 of the numbers from Fig. 3:

Remainder Zero : Z
Remainder oNe : N = Weak or Strong
Remainder Two : T
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In Fig. 3 the difference of two numbers in adjacent places is always 1 or 2.

The sum of the numbers occupied by the four animals is an important property of the
position; we call it the trace. Every move changes the trace by 1 or 2. If the hounds succeed
in trapping the hare at the bottom of the board, then the hounds are at 0, 1, 0 against the
trapped hare at —1 and the trace is (. If instead the hounds trap the hare on the side of the
board, say at 1L, then the hounds end on 3, 2, 0 against the hare on 1, and the trace is 6. It
can easily be checked that

No matter where
You trap the hare,
The trace you'll see

Divides by three

TRIALITY TRAPS!

The Opposition

The best way for the hounds to make their trap is to move so that they leave the trace a
multiple of 3 at every turn. We call this “keeping the opposition”. If they do this, the hare’s
move must be to a non-multiple of 3, because it changes the trace by 1 or 2. But whenever the
trace is not divisible by 3 the hunter usually has a choice of several hound moves which restore
it to a multiple of 3, and among these he should find one that restores a winning position.

Threefold traces
‘Win most chases.

KEEPING THE OPPOSITION

If you check the traces for our first game, with the board numbered as in Fig. 4, you'll see
that the hounds always kept the opposition:

hare: k i i g J i k
hounds: e¢bd  fbd fed fhd fhg fhj ihj

trace: 9 9 6 6 3 3 0

Since the hare doesn’t want to be trapped, he doesn’t want the hunter to move to positions
whose trace is divisible by 3. The best way to prevent this is for the hare to grab the opposition
by moving to such a position himself. Then any hound move will change the trace to a
nonmultiple of 3 and the hare is likely to be able to regrab the opposition. This is the way
the hare won our second game. The hounds blundered on their second move by playing from
4 to 2, giving a trace of 8, and from then on the hare managed to retain the opposition at
every turn:
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3L T 3R

IL] 2 R
OL (C| OR

Figure 4. The Board Numbered for Determining the Opposition.

hounds: abd c¢bd fbd? fed feg fhg fig eig fig fij
hare: k i i! h k j k j k h
trace: 10 10 9 6 3 3 3 3 3 3

So whoever can move to a position whose trace divides by 3 is said to have the opposition.
The opposition is certainly a valuable commodity which both players desire. But it’s not all
there is to the game, because sometimes the hounds may have the opposition but he unable
to keep it without letting the hare escape behind them. In other cases the hare may have
the opposition for several moves, but then lose it because the hounds block his only moves to
places which would restore it. However, such positions are rather rare, and the average player
who combines the principle with a little commonsense will usually trap a novice hare on the
small board. An annotated example appears on p. 716.

When Has the Hare Escaped?

He has escaped if he has passed or is passing two hounds, unless he is on a square place (W or
S) and the hounds can immediately occupy the neighboring octagons (Z or T) aside or ahead
of him.

Although he may have not escaped, the hare is free in some other positions in which the
hounds can never force him to retreat. This certainly happens if he’s strictly passed a hound
and is not on a Weak (W) square, or, if he’s on a central octagon (T) and is past or passing
at least one hound.
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Third Game

Hounds Hare Trace Comments
3L, 5, 3R -1 i
3L, 4, 3R 9 Taking the opposition
0R 10
A novice hunter might have moved 4 to 2, giving a “solid”
2 4 3R 9 10 . 3
position, but losing the opposition.
1C 10
The other “reasonable” move, 3R to IR, changes the trace by
2,3L, 3R 9 the wrong amount, Since the move from 2 to | would allow
the hare to escape, there's really only one choice,
-1 7
Because the hounds can’t retreat, they can never increase the
trace by 2, so to gain the opposition they musl decrease 7 to 6
1C, 3L, 3R(") 6 by moving a hound from 2 to 1. A move to 1R or 1L won'i lose,
but wastes time, since the hare can force the hounds back to
the present position position by going to LC.
OR 7
1C. 2. 3R 6 %The other two moves (3R to 2, 1C to OL) that restore the trace
> to 6 would let the hare escape.
—1 3
Once again, the other moves (3 to 1, 2 to {1} keeping the opposi-
1C, 2, 4(Y) i} tion would let the hare escape, leaving only this unlikely
locking move.
OR 7
4 o 3R repeats; 2 to 1 allows escape; only 1C to OL makes
' :
OL, 2, 4(1) {pmgress
IR 7
0L, 2, 3R 6
OR 3 Obvious
oL, 2, IR 3
—1 2 Hare's last gasp.
0L, OR, 1R 4] The novice hunter might now lose by playing from 1R to OR.
1C 2
The oanly time the hounds reach a trace larger than their
CL, OR, 2 {previous one.
—1 1
OL.OR.1C 0 Wins.

Losing the Opposition

To analyze the exceptional positions, when someone wins in spite of not having the opposition,
it's best to consider the types of place the animals occupy. For example, all the positions where
the hounds have just won are of type Z2NT, meaning that 2 animals are on Z places, 1 on N
and 1 on T.
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Some of the exceptional cases arise from the difference between the Strong and the Weak
types of N places. Each Strong (central) N square is next to four other places, while each
Weak (side) square is next to only three. Other things being equal, an animal should prefer
a Strong place to a Weak one, since both make the same contribution to the oppeosition; but
the Strong place is likely to offer him more choices later. For example, one exceptional case
arises when the hounds move to Fig. 5. Despite the fact that the hounds have the opposition

5
3 @ 3R

il @ @
oL lic[ or

Figure 5. An Exceptional Hare and Hounds Position.

®

3L 3R

O @ R
oL fic] OR

Figure 6. Another Exception to the Opposition Principle.
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(trace 3), the hare wins by playing to 1C, because now the only hound moves which keep the
opposition let the hare escape. In some sense this N2T? position loses because the hound at
1R is on a Weak square. On the other hand, we saw in our third game that a hare on —1 has
no defence against hounds on 4C, 2, 1C (another N?*T? position). Unless the hare has passed
one or more hounds, S2T? wins for the hounds, but SWT? often loses.

As another example, suppose the hare has just moved to the position of Fig. 6. He has
the opposition, but after the hound on 4C moves to 3L, the hare must retreat to 0L,
losing the opposition and the game. But a hare in place 1C against these hounds would
have both the opposition and a winning position. Once again, the difference between a Strong
and a Weak square means the difference between winning and losing, this time for the hare.

A Strategy for the Hare

or|

oL

4R
3R

&
v (B o [A] = (B
X

R
i o

=)

L/

4

MR
\

.‘\

Figure 7. Keeping the Opposition on a Semi-infinite Board.
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We'll show that an expert hare that has the opposition on the semi-infinite board of Fig.
7 can either keep it indefinitely or escape, unless he has to start from the Scare’m Hare'm
position (Fig. 8). In fact the hare will always stay on the six shaded places numbered 1C,
0L, OR, —1, —2L and —2R, unless the hounds let him out. His basic strategy is to keep the
opposition.

®

i /m

3R

o B v

QAN
g S:

/1
I
4
£

L

[ 77

A\

Figure 8. The Scare’'m Hare’'m Position.

If possible, escape or gain your freedom!
Otherwise, keep on the six shaded places, and
if you can keep the opposition by a move to a
non-Weak place, do so.
If a move to S(1C) is blocked, then
(A) against hounds on T2S, move to W(—2L or —2R),
(B) against hounds on ZN?, advance to Z (losing the
opposition) on the other side of the
board from the hound-occupied 7.
If a move to Z (0) is blocked,
(C) go to T (—1) (losing the opposition).

THE HARE'S STRATEGY

If these rules allow two or more moves, choose any one. If they allow none, resign (or hope for
a mistake)!

First we show that if the hounds reach Fig. 8, a recent hare’s move must have been of type
(A), (B) or (C). For if the hounds came from a position in which they had the opposition,
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then the hare, after his last move, didn’t, and the present position must have been reached by
(B) or (C). Otherwise the hounds have come from a position whose trace was congruent to 1,
mod 3, and hence from Z2N, since they are on Z* in the figure. At the hare’s last move 2 was
vacant and either OL or OR was occupied by a hound. But if the hare came from 0L, 1C or
OR he could have escaped by moving to 2 and so he must have come, from the Weak square

~2, which he can only have reached by a move of type (A).

Suppose you've just made a move of this strategy which was not of type (A), (B) or (C).
Then you have the opposition and you're not on a Weak square and the table below shows
that the Hare's Strategy always gives you another move, unless you're faced with the Scare’'m

Hare'm Position.

FTO\I:I\'[“\ z 5 T
{A) or gain o
Z — freedom by ;_lredd}
advancc to T. ree
S escape by already .
advance to T. - free.
gscape, since .
T not Fig. 8. (&) or (B) l -

oL

i @

fC| OK

R

3L

4C

3R

iL| ¢

iy

)P

R

o

2
2K

Figure 9. Position after a Move of Type (A).
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Nezt suppose you've just made a move of type (A). Then in the next few moves you can
either escape or regain the opposition by a move not of type (A), (B) or (C), and from which
the hounds can’t immediately move to Fig. 8. This is because when (A) is applied, the Strong
square 1C must be occupied and also two central octagons (not including —1 because the hare
has not escaped); see Fig. 9. Now the only way the Hare's Strategy can lose the opposition
from an N square is by a move of type (C) after a hound moves to 0L. But after move (a)
in Fig. 9 the hare regains the opposition, while after move (b) he soon escapes. The hounds
can’t reach the Scare’'m Hare'm Position in time.

o N

3L 4C| 3R

1Ll 2 R
T
or 7

d
o]

o [~
Ly Y

Figure 10. Position after a Move of Type (B).

A\

Now suppose you've just made a move of type (B) (Fig. 10). Then you threaten to escape
by moving to the empty T place ahead of you. If the hounds fill this from N, you escape by
advancing to W, and if a hound from Z fills it you can reacquire the opposition by retreating
to T. The hounds can’t straight away reach the Scare’'m Hare'm Position.

Finally, if you've just made a move of type (C), and were on a Strong square, both adjacent
Z’'s must be occupied and you could have escaped. So you were on a Weak square and we

have already discussed the situation following your previous move, which must have been of
type (A).

On the Small Board

The Hare’s Strategy shows that if they don't have the opposition the hounds can only win on
the small board by keeping a hound on 5 until they can grab the opposition by moving him to
4 or 3. If they move first from 3L, 5, 3R the hounds can beat a hare starting anywhere except
4. Here is a sample game.
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Hounds Hare

3L, 5, 3R 1c
3L, 5,2

—1
1L, 5,2

1C
OL, 5,2

-1
1C, 5,2

Chapter 21. Hare and Hounds &

Remarks
{Or the hare could start on 1L or 1R.)
If instead to 0, the hounds take the opposition by moving [rom 5 to 4.
If instead to 0, the hounds take the opposition by moving from 5 to 3.
If instead to 0, the hounds take the opposition by moving from 5 to 4.

Now, since there is no place — 3 on this board, the hare is forced 1o give
the hounds the opposition and the game.

On the Medium and Larger Boards

6L 6R

4L 4R

8
T
S
3L |4C| 3R
2

1L IR

OL |IC| OR

Figure 11. The Medium Board.

By a slight extension of this argument, the hounds, moving from 6L, 8, 6R on the Medium
Board (Fig. 11) can trap a hare starting on —1, 0, 2, 3 or 5. Since they have the opposition
they can certainly win on the Small Board got by dropping numbers —1, 0 and 1 (Fig. 1).
The hare on 2 may reach one of the positions of Fig. 12, forcing the hounds to give him the
opposition in return for his retreat, but it is too late, since the hounds can play to 3L, 5, 3R,
which wins for them, even without the opposition, because places numbered —2 are not on
the board. What if the hare now goes to OL? See the Extras.
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@ ®
(a) (b)

o o
O O

Figure 12. A Sound Bound for a Hound?

It is interesting that the hounds win if the configuration of Fig. 12(a) occurs at 3L, 5, 6R
against 2, but not if it is higher (on the Larger Board of Fig. 3) at 6L, 8, 9R against 5. After
the hound moves from 8 to 6, the Hare snatches the opposition by retreating to 3 and then
follows his Strategy, but using the next set of six squares (4C, 3L, 3R, 2, 1L and 1R) up the
board.

It should now be clear that the Hare's Strategy can be improved. If the Hare doesn’t have
the opposition, he should try to reach a position like 5 against hounds on 6L, 8, 9R (all such
positions have trace 28). The way to force the hounds to move into such a position is to move
to one whose trace is larger than the desired one by a small multiple of 3. In fact we can
prove that

on the Larger Board (Fig. 3) the
hounds can win from a position
of trace 31 only if the Hare is on a
Weak square or the position is
6, 10, 11 versus 4C (Fig. 13).

THE THIRTY-ONE THEOREM

The proof is sketched in the Extras.
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) 8 9R

C| 6R
41| S UR
3L 3R

Figure 13. The Hound-Dog Position.




Extras

Answers to Questions

Against the hounds placed as in Fig. 1, the hare can win only if he starts at ¢ and requires
the hounds to start first.

With the hounds on 9L, 11, 9R in Fig. 3 the hare can win from any position provided
he has first move. The hardest case is when he starts on 1C, so that the hounds have the
opposition. He wins by playing to 2 and using the Thirty-one Theorem. Of course if he starts
on 2 he plays to the Strong square 4C and gains the opposition.

If the hounds move first they can win only if the hare starts on —1. They must play with
great care, not only maintaining the opposition but also preventing the hare from escaping or
achieving the trace 31. Surprisingly, even though it gains the opposition, the opening move
from 11 to 10 loses! The difficulty is that if the hare advances via 0, 1 and 3 to 5, the hounds
must then be able to reach 6L, 10, 6R. The defence 6L, 7, 6R is unattainable against a hare
who is determined to keep the trace at least as high as 27. The defence 6L, 7R, 9R fails when
the hare moves from 5 to 7C, forcing the 7R hound to occupy 8, and then retreats to 5 again
and wins as in Fig. 12. If the hounds try to prevent the hare from reaching 5 by occupying
5, 9, 10, say, when the hare is on 3, then he escapes via a weak 4. But how can the hounds
reach 6L, 10, GR if the hare plays via 0, 1 and 3 to 57 They must have come from 6, 8, 10 if
they had the opposition with the hare on 3; but where were they before that with the hare on
17 There is no position leading to 6, 8, 10 in which they had the opposition!

A Sound Bound for a Hound?

If the hare is OL and the hounds are on 3L, 5, 3R, how do they win? Answer 3R to 2. If hare
takes the opposition by going to —1 then 2 to OR, and if hare to 1C, then 3L to 2. If hare to
—1 again, OR to 1C wins; the trick is to hold back the hound on 5 until they're ready for the

kill.

All Is Found for the Small Board Hound

In this chapter we've normally taken the point of view of the hare. To redress the balance,
Figs. 14 and 15, which are adapted from Figs. 92 and 93 on pp. 241, 243 of Fred. Schuh's
Master Book of Mathematical Recreations, show all the winning positions for the hounds on
the Small Board. Figure 14 is a minimal set of 24 P-positions (hounds win if hare has to
move) which will ensure victory in all the positions the hounds deserve to win. Figure 15
shows 13 other P-positions for the hounds which they can use for variety in seeking to hide
their strategy from inquisitive hares. In each of the 37 positions the hare’s place is indicated
by a number, the remoteness function for the position.
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All Is Found for the Small Board Hound

positions for the Hounds.

Figure 15. Thirteen More P-
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Table 1 gives a winning strategy for the hounds, based on the first 20 P-positions of Fig.
14. The remarks are listed here (L and R are hare’s; in Figs. 14, 15 left and right are the
hounds’):

(a) the hounds do not have the opposition, but the hare is now forced to 1R, whereupon
the hounds go to 3R, 5, 2 (position 1, reflected), still without the opposition, but the hare
is forced again. After he goes to OR, the hounds to go 3R, 4, 2 (position 7, reflected).

(b) also without the opposition, but see position 4.
(c) still without the opposition, but see position 5.

(d) even now the hounds don’t have the opposition, but (position 6) the hare is forced to
a zero place and the hounds go to position 13 or its reflexion.

(e) if now or later the hare goes to —1, play as from position 18: the hound on 2 goes to
0, (position 21 or 22), and then the rear hound comes to 2 (position 20).

From: il hare hounds reply arriving with and Remarks
plays on: by moving to: at: rCmoOIEness: trace:
initial 41R,1C0,—1 L 5 2 1. 26,26,22,2222 141111109

position 2 3 4 3 2. 22 12

1. 3R 4 5 2 3, 24 14 (a)

1 L 5 2 4. 20 7 tb)
l.or2 0 i 402 7. 20 9
| a2 3 8 18 9

4 1t oL 5 2 5. 18 L] {c)
0 IL3R 2 9. 16 6

5 -1 15 2 b, i6 7 {d)
OR 0 4 2 6. 10 &
) oL 1C3L 2 13. L4 1]
7 1! 3 2 8. 18 9
-1 3L 40R 1. 12 [
8 0 IL 23R 9. 16 6
-1 31C 3 10 16 6
9. -1 IL 3R OR! 12 14 3
1 0L 23R 17. ] ]
10. oL LIc 2 13 14 6
11 oL 2 40R 16. refl. 10 6
1C 3L 20R 17. refl. g 6
12, 1 23R OR 15 12 6
oL iL 20R 18, 6 3
13. =1 41C 2 14. 12 6
1L ALoL 2 trapped! Q &

14 or 15, oL 40R 2 16. refl. 10 6 (e}
16, 1 SROL 2 17 ) [ (&)
7. OR IROL 2 18. refl. 6 3 (e
18, -1 1L 0 0 19. 4 0

Ic 00 2 20 2 3
1% 1C 2 00 20, 2 3
0 trapped! 0 0

20. -1 1C 0

Table 1. A Winning Strategy for the Hounds Using just the Positions of Figure 14.
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Proof of the Thirty-One Theorem

The hounds can only keep the opposition from a position of trace 31 by moving to 30 (a move
to 33 would involve an illegal retreat). If they go to 30, the hare will move to 31 if he can; the
hounds will move back to 30 and the hare will win by repetition. The hounds can only win by
getting the hare on to a Weak square, or by preventing him from moving to 31. How might
they do that? If the hare is on r, the hounds must be blocking any strong neighboring place
r 4+ 1. Suppose the other hounds are on x and y where = + y < 11 + 10.
r+(r+1)+a+y=30,

2r+129,r =4 Ifr 2 8, £+ y < 13 and the hare has escaped.

If r = 7, a hound must be blocking 8, z 4+ y = 15, and, unless the hare has escaped, x = 6,
y = 9. The hare moves to 5 and reaches Fig. 12.

If r = 6, a Z place, the hounds must be blocking 7C and also & = 8, to prevent escape, so
y = 9. The hare plays to 5. If the hounds restore the trace to 30 the hare returns to 6 and
wins by repetition.

If r =5, a T place, the hounds must be blocking 6L, 6R and y = 13, off the board.

If r = 4 and not a Weak square, the hare is on 4C. A hound must be blocking 5, so
x4y =21, z =10, y = 11. This is the exceptional Hound-Dog Position (Fig. 13) which the
hare can't win. If he goes to 3, the hound on 10 moves to 8. If the hare then moves to 4R, a
hound moves from 8 to 6R forcing hare to retreat to 3R, after which the hound moves from
11 to 10C and regains control.
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Lines and Squares

And I say to them, “Bears,
Just look how I'm walking in all of the squares!
And the little bears growl to each other, “He’s mine,
As soon as he’s silly and steps on a line.”

A A, Milne, When We Were Very Young.

On the square, to the left, was elegantly engraved in capital

letters this sentence: ALL THINGS MOVE TO THEIR END.

Frangois Rabelais, Pantagruel, V, 37.

If you find you're bored to pieces with our other games, you should find your board and pieces
to play these ones. The chapter contains several old friends and some new ones.

Tit-Tat-Toe, My First Go, Three Jolly Butcher Boys All in a Row
Ozford Book of Mother Goose Rhymes, 1951, p. 406.

The game is more usually known as Tic-Tac-Toe, or Noughts-and-Crosses, depending on which
side of the Atlantic you are. Whoever moves first puts a cross (X) in one of the nine spaces in
the board of Fig. 1. His opponent then puts a nought (O) into any other space and then they
alternate X’s and O’s in the remaining empty spaces until one player wins by getting three
of his own kind on one of the eight lines of Fig. 2. If teacher isn’t listening he then shouts a

Figure 1. Tic-Tac-Toe Board. Figure 2. Its Eight Lines.

731
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suitably triumphant phrase, which in some parts of America is
“Tic-Tac-Toe, three in a row”,
and, in Holland, according to Fred. Schuh, is

“Boter, melk en kaas, ik ben de baas”.

When neither player is able to make a line we have a tied game. We have no doubt that
most of our readers were bright enough as children to discover that this always happens when
the game is properly played, and only the authors of books like Winning Ways retain sufficient
interest to study the game in any detail.

But have you ever tried a complete analysis? If so, you've probably found that it took
more space than you first thought it should. Later on we'll give a more concise analysis than
most, though we admit that our rough work took more than one sheet of paper. But first let’s
look at three non-board games.

Magic Fifteen

In this game the players alternately select numbers from 1 to 9 and no digit may be used twice.
You win by getting three numbers whaose sum is 15. This game was suggested by E. Pericoloso
Sporgersi.

Spit Not So, Fat Fop, as if in Pan!

Spit Not So, Fat Fop, as if in Pan! is a sentence for which we are indebted to Anne Duncan.
It suggests the following game. Write the nine words on nine separate cards and have the two
players alternately select cards, a player winning if he can collect all the cards that contain a
given letter. This game was suggested by Leo Moser’s game of Hot in which the nine words
were HOT, FORM, WOES, TANK, HEAR, WASP, TIED, BRIM, SHIP, and the winner must
collect three words with a common letter.

Jam

John A. Michon’s game of Jam is played on Fig. 3. The players alternately select roads
(straight lines) and whoever manages to take all the roads through a town wins.

Figure 3. A Jam Board.
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How Long Can You Fool Your Friends?

We'll bet you can fool most of them for quite a long time, playing any one of the above games.
But they're all Tic-Tac-Toe in disguise, so you should be able to make the right moves while
they are floundering! You can see why these games are all the same by arranging the numbers
for Magic Fifteen as a magic square (Fig. 4(a)); the words for Spit, Ete. as in Fig. 4(b); and
naming the towns or numbering the roads for Jam as in Fig. 4(c). For Hot you can prove
the same thing by writing the words on Fig. 1 in the order we gave them. Can you find a
better sentence than Anne’s, possibly using redundant letters as in Hot? It would be nice if
the words of your sentence could be written across the board in order! See the Extras.

61138 NoT| IN [PAN

5|3 SO [SPIT| AS

21914 FOP | IF |FAT

(x)MagicFiften.  (b) Spit;, Et=.

Figure 4. The Game’s the Same by Any Name.

Analysis of Tic-Tac-Toe

For convenience we number the board as in Magic Fifteen and suppose by symmetry that the
first move (X) is in 5 (Fig. 5), 6 (Fig. 6) or 7 (Fig. 7). We’ll also suppose that each player is
sensible enough to

(a) complete a line of his kind if he can, and

(b) prevent his opponent from doing so on his next move.

In the analysis,
bold numbers represent such forced moves,
I denotes a move that’s better than some others,
7 denotes a move that’s worse than some others,
X denotes a win for Cross,
o denotes a win for Nought,
® denotes a tied game,
~ denotes an arbitrary move, and
v. is a cross-reference to another column in the analysis.
The plays are given in numerical order, apart from the convention about the initial digit.
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] ol‘

51 52

Figure 5. Starting in the Centre.
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o o |
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Figure 6. Starting in a Corner.
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O O
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Figure 7. Starting on a Side.
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X 77 X X|OX

X o | 1R
(a) 719 or 917 (b) 72 (c) 753

Figure 8. Lesser Known Byways of Tic-Tac-Toe.

In “The Scientific American Book of Mathematical Puzzles and Diversions” Martin Gard-
ner remarks (and we agree) that many players have the mistaken impression that because they
are unbeatable they have nothing more to learn. He gives three examples (Fig. 8) showing
how a master player can take the best possible advantage of a bad play. In Fig. 8(a) X’s last
move was chosen so as to give O four losing chances out of six (the Enough Rope Principle).
Against X's opening of 7, Gardner recommends O to reply with 2 since this offers X three losing
chances (Fig. 8(b)). In Fig. 8(c) O can let X choose his move for him, since it is impossible
for O to play without setting a winning trap!

Ovid’s Game, Hopscotch, Les Pendus

In his Ars Amatoria, Ovid advises young women to learn certain games to amuse their lovers.
He mentions in particular a certain ludus terni lapilli played on a tabella which is conjectured
to be a moving form of tic-tac-toe, played with 3 black pebbles and 3 white ones. Several such
games are known to have been popular in ancient China, Greece and Rome and in medieval
England and France.

In the version nowadays known as Ovid’s Game, the players take turns placing their
pebbles on the hoard until all 6 are down. If neither player has won by getting the 3 of his
kind in a row they continue playing by moving on each turn a single one of their pebbles to
any orthogonally adjacent square. The first player has a sure win by playing in the centre:

(@) (b)

Figure 9. Six and Nine Men's Morris Boards.
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51 14683,4t09, any, 9 to 2, or
"121946,1 to8, any, 5 to 3,

so the central opening is usually forbidden, making the game a draw. However, the loopiness
of the game allows many variations to occur in a single play and the game teems with traps.

We will use the name Three Men’s Morris for the version in which, in the moving part
of the game, the players are allowed any chess king move along the 8 lines of Fig. 2. An
American Indian version, which has been called Hopscotch, allows any king move, whether
on the 8 lines or not. It is a draw, even when the central opening move is allowed, as is the
French version, Les Pendus, in which a pebble can be moved to any empty space.

Six Men’s Morris

Six Men's Morris is played on the board of Fig. 9(a). Each player has 6 counters and the
game has two phases as in Ovid’s Game. First the counters are placed alternately by the two
players. Then the counters are moved from one of the 16 nodes to an adjacent one along a
line of the board. If a player gets three in a row he removes an opposing counter. A player
wins when he reduces the opposing force to two counters.

Nine Men’s Morris

Nine Men'’s Morris is played similarly with 9 counters for each player on a square or rectangular
board designed as in Fig. 9(b). When a player forms a mill (gets three in a row) he again
removes an opposing counter, but is not allowed to take one from an opposing mill. There
are a number of variations and many names (Merrilees, Morelles, Mill, Miihle); see the books
of R. C. Bell or H. J. R. Murray for details. Ralph Gasser has used an endgame database of
about 10'° states and an 18-ply alpha-beta search to show that, with best play, Nine Men’s
Morris is a draw.

Three Up

This is a vertical three-in-a-row game. Each player starts with six checkers of his own color.
They play alternately by putting a checker onto the table or onto a previous stack, and each
tries to complete a stack three high of his own color. When all the checkers are placed, the
players continue by alternately transferring single checkers of their own color from the top of
one stack to the top of another, or possibly onto the table. At no time may any stack be more
than three high.

It’s very easy for a skilled player to beat a novice at this game, which has many cunning
features. But Vasek Chvatal has shown that if you never try to win (by putting two of your
pieces in a stack) then you can’t lose! For if your opponent has set up ¢ (> 1) threats (stacks
beginning with two of his pieces) then he can cover at most 6 — 2t of your checkers, so you
have at least 2f uncovered ones—more than enough to deal with his threats.

Four-in-a-Row

It's clear that the first player can get l-in-a-row on a 1 x 1 board, and 2-in-a-row on a 2 x 2
board, and we have seen that he can’t get 3-in-a-row on a 3 x 3 board, but it’s not hard to
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Figure 10. Four-in-a-Row is a Second Player Tie on a 5 x 5 Board.

show that he can get 3-in-a-row on any bigger board, even with just one extra square. How
big a board is needed to get 4-in-a-row? C.Y. Lee observes that the second player can tie on
a b x5 board. His strategy is to play as in Tic-Tac-Toe whenever the first player plays in
the central 3 x 3 square. You won’t have too much difficulty if you remember this and note
that when you play in the squares marked with a diagonal line in Fig. 10 you sabotage your
opponent’s chance of getting 4-in-a-row on the border, and also on a diagonal involving two
of the squares 1, 3, 9 and 7.

Lustenberger has used a computer to show that 4-in-a-row is a win for the first player on
a 4 x 30 board.

By far the most interesting and popular version is the 3-dimensional one, played on a
4 x 4 x 4 cube. Oren Patashnik has shown that the first player can always win at 4 x 4
x 4 tic-toc-tac-toe. Patashnik’s solution now includes a computerized dictionary of several
thousand openings. This dictionary was obtained by patient and skilful interaction between
Patashnik and a computer over a period of many months. It is too large to be accessible other
than by computer. Several skeptical computer scientists have recently examined Patashnik’s
dictionary and it is now accepted as complete and correct.

Five-in-a-Row

It’s quite a good game just to try to get 5 in a row orthogonally or diagonally on any reasonably
large board. Mathematicians will prefer to play Five-in-a-Row on an infinite board.
In this kind of game there are several well defined degrees of threat and when playing with
children and good friends it’s nice to announce these by suitable cries. We recommend
SHOT! for a threat to win next move, e.g.

00000 or ® 000

SHOTS! for two or more SHOTSs at once, e.g.

O
Ceeee. - "0000-
.. or @ o 9O O @
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POT! if you can guarantee a SHOT next move, e.g.

o o000 ¢ °__ @ 00 -0
POTSHOT! for a POT and a SHOT at the same time, e.g.
@

[
e e QOO ¢ o and
@
®
O

POTS! for two or more POTs at once, e.g.

These can be of great help in understanding the effects of forced moves, for example:

A SHOT, typically a line of 4 open at one end, must be blocked instantly. So a pair of SHOTs
wins next move.

A POT, typically a line of 3 open at both ends, must either be blocked immediately or staved
off with a SHOT. So a POTSHOT wins unless possibly the move that blocks the SHOT is a
countering SHOT. Against a pair of POTs you can only hope to defend by making a sequence
of SHOTSs until one of them happens to block one of the POTs.

These terms can be applied to many games of this type, for instance in 4-in-a-row,

O N N B

is a SHOT and
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is a POT. Similar cries are used in Phutball (see later in this chapter); there are obvious
connexions with the notion of remoteness in Chapter 9.

Five-in-a-row has been called Go-Bang in England for at least a hundred years and has
more recently been called Pegotty or Pegity (Parker Bros., U.S.A.).

Go-Moku

In Japan there are several perfect players who can always claim their win in their version, Go-
Moku, of 5-in-a-row on a Go board, size 19 x 19, even though the first player is handicapped
by not being allowed to make the fork threat of a pair of open lines of 3 (we’d cry POTS!
for this) and siz in a row is net counted as a win. Allis, van der Herik and Huntjens have used
a computer to show that Go-Moku is a first player win.

Six, Seven, Eight, Nine, ..., in a Row

A. W. Hales and R. I. Jewett have produced an ingenious pairing strategy which shows that
many games of this type are tied or drawn. For instance here is a quick proof that 5-in-a-row is
tied on a b x 5 board. All you have to do is to make sure that for every move of your opponent
in a marked square in Fig. 11 you take the similarly marked square in the direction indicated
by the mark. So you could give her the centre square andlet her make the first move as well. If
the position you're presented with already satisfies the condition, make a random move. At the
end of the game there will be at least one of your counters in every conceivable winning line.

T ==1
/1=T1=\

Figure 11. A Hales-Jewett Pairing.

You can see that 9-in-a-row is a draw on an infinite board with the Hales-Jewett pairing of
Fig. 12. When your opponent takes the cell at one end of a line in the figure, you take the one
at the other. The result was first proved in 1954 by Henry Oliver Pollak and Claude Elwood
Shannon, using the following strategy. Tile the board with H-shaped heptominoes: the second
player plays ordinary tic-tac-toe in each of these regions, concentrating on preventing a line of
3 in either a diagonal, or the horizontal, or the right vertical. John Lewis Selfridge also gave
a Hales-Jewett pairing on an 8 x 8 board, which could be used to tile an infinite one and give
the same result.

T. G. L. Zetters (nom de guerre of some Amsterdam combinatorists) recently showed that
the second player can even draw 8-in-a-row. Their proof uses a parallelogram-shaped tile of
12 cells, and goes some way towards showing that 7-in-a-row is also a draw.
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Figure 12. Nine-in-a-Row is a Draw on an Infinite Board.

X
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S.W. Golomb has found a Hales-Jewett pairing for 8-in-a-row on an 8 x 8 x 8 cube. It will
be easier to explain if we first describe the analogous two-dimensional solution for 6-in-a-row
on a 6 x 6 square. Figure 13(a) is like Fig. 11 except that you may reply to a move on
a diagonal with any other move on the same diagonal. Note that the figure has the mirror
symmetries indicated by the two thick lines, so it would suffice to indicate only one quadrant
as in Fig. 13(b).

Figure 14 indicates one octant of Golomb’s 8 x 8 x 8 pairing in a similar way. The symbols
—, |, and \ are in the horizontal layer shown, while e is all you can see of a vertical line. The
arrows pierce the layers and represent lines of obvious directions in various diagonal planes.
The three mid-planes of the 8 x 8 x 8 cube (represented by the thick lines in Fig. 14) are
reflecting planes and, as in the 6 x 6 pairing of Fig. 13, you may respond to any move on a
body diagonal with another on the same diagonal. In fact Golomb can give you any six cells
on each of the four body diagonals and allow you to have first move and still tie the game.

Golomb and Hales have obtained further results on hypercube Tic-Tac-Toe.
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Figure 13. A Pairing for Six-in-a-Row on a 6 x 6 Board.

1 2 3 4 1 2 3 4 P2 3 4 1 2 3 4
1*—-.' fl—o|}!] 1.|_._ 1\‘-*-'“"
o= 11| FRV| :[INE= ifmelel]
s 1i—je} zleNI—| 3Vl 3(1]e)el—
4= o |—IN( 4][.]— 4.—'. 4\l S

1 2 3 4

Figure 14. Golomb’s Pairing for Eight-in-a-Row on an 8 x 8 x 8 Cube.

n-Dimensional 4&in-a-Row

Hales and Jewett consider the game of k-in-a-row on the n-dimensional

Exkxkx...xk

board. They prove that if k is sufficiently large, namely

k>3 -1 (k odd) or
k>a2rtl =2 (k even)

the game is tied by a suitable pairing strategy, and on the other hand that if n is sufficiently
large compared to k, it is a first player win by the strategy stealing argument described below.
They conjecture that the game is tied if there are at least twice as many cells as lines.

How many lines are there? Leo Moser has remarked that each line is determined by either
one of the two cells which extend it into the surrounding

(E+2)x(k4+2)x(k+2)x...x(k+2)
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cube, so that the total number of lines is exactly

1 TE TL
Ak +2)" - k"),

The Hales-Jewett conjecture is therefore that the game is tied whenever

k"> (k+2)" — k",

2k" = (k +2)™.
So it should be true if & > 3n, for example; Leo Moser has proved that it’s true if £ > e¢nlogn
for some constant c.

Strategy Stealing in Tic-TacToe Games

For almost all forms of tic-tac-toe game there is a strategy stealing argument which shows that
the second player cannot have a winning strategy. Though earlier authors probably knew it,
this was formally proved by Hales and Jewett. We suppose that each player has an indefinite
supply of his own kind of piece, that the pieces don’t move after they're once put down, and
that each player’s aim is to produce a winning configuration with some of his pieces.

The assertion is that all such games in which the winning configurations for the two players
are similar, are either wins for the first player or are tied under best play. For if the second
player had a winning strategy, then the first player could steal it as follows. After a random
first move he could pretend to be the second player, ignoring his opening move and making
a random move whenever the stolen strategy would otherwise repeat a move already made.
We conclude that if the second player had a winning strategy, so would the first, since an
additional piece on the board can never harm him! Obviously both players can’t win at once,
so the supposed winning strategy for the second player cannot exist.

The argument applies to n-in-a-row on any shape of hoard, provided no special restric-
tions, like those of Go-Moku, are added. In this case the winning configurations are just the
appropriate lines of n, and are exactly the same for each player.

Figure 15. A 7 x 7 Hex Board.
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However, in the most notorious cases of strategy theft the winning configurations are not
identical but related by a symmetry of the board (and so are still similar). These are listed
below, in chronological order.

Hex

Hex is played on a rhombus of hexagons like that of Fig. 15. Black wins if his pieces connect
one pair of opposite sides of the board and White if his connect the other pair.

Hex was invented by Piet Hein and the strategy stealing argument found by John Nash.
Cameron Browne has written a very good book on Hex strategy. Vadim Anshelevich has
written a tournament-winning Hex-playing program.

Bridgit

Bridgit (or Gale) is played on two interlaced n by n + 1 lattices. Left joins two adjacent
(horizontal or vertical) spots of the black lattice and Right makes similar moves in the white
one. No two moves may cross. In Fig. 16 Left has just won since he has formed a chain

connecting a topmost spot to a bottommost one. Bridgit was invented by David Gale and its
strategy stealing argument by Tarjan.

+

Figure 16. Left Forms a Black Chain in Bridgit.

How Does the First Player Win?

In these cases, as in the examples considered by Hales and Jewett, it is impossible for a
completed game to be tied, so that the argument actually proves that the first player can
win, but does not give much help in finding an explicit winning strategy for him. No explicit
strategy for Hex is known, and Tarjan and Even have shown that, in the technical sense,
generalized Hex is hard. But for Bridgit an explicit pairing strategy was found by Oliver
Gross, and many other strategies can be deduced from Alfred Lehman’s subsequent theory of
the Shannon Switching Game.

The Shannon Switching Game

The Shannon Switching Game generalizes Bridgit. It is played on a graph representing an
electrical network in which certain nodes are labelled + and some others are labelled —.
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Each edge (begin the game with them drawn in pencil) represents a permissible connexion
between the nodes at its ends. Mr. Shortt, at his move may establish one of these connexions
permanently (ink over a pencilled edge) and attempts to form a chain between some + node
and a — one. His opponent, Mr. Cutt may permanently prevent a possible connexion (erase a
pencilled edge) and tries to separate + from — forever. Figure 17(a) shows a Shannon game
equivalent to our Bridgit one. You can always suppose that there’s only one positive node and
one negative one by making identifications as in Fig. 17(b).

e 2 (3 b

Figure 17. Bridgit Played as a Shannon Switching Game.

Supposing this, Lehman has proved that Mr. Shortt can win as second player if and only if
he can find two edge-disjoint trees that each contain all the nodes of some subgraph containing
+ and — . The “only if” part is hard, but there’s an easy strategy which proves “if”: whenever
Mr. Cutt’s move separates one of the trees into two parts, A and B, Mr. Shortt makes a move
on the other tree joining a vertex of A to one of B.

Figure 18. How Mr. Shortt Wins a Game of Bridgit.




746 Chapter 22. Lines and Squares &

Let’s use Lehman’s theory to show how the first player, who should regard himself as Mr.
Shortt, can win in Bridgit. After his first move (Fig. 18(a)) Mr. Shortt (who's now second in
line to move) can see the two edge-disjoint trees indicated by the thick and pecked lines of Fig.
18(b) (remember to regard each of the + and — sets as connected, including the node that has
been Shortted to —). If now Mr. Cutt disconnects one of the trees, for example by erasing the
scissored edge in Fig. 18(c), then Mr. Shortt should secure one of the six bridges (Fig. 18(d))
across the imaginary river that now separates the two parts of the tree severed by Mr. Cutt.

The game can be generalized to make the winning configurations for Mr. Shortt just those
which contain a specified family P of sets of edges. (In the original game P was the family of
paths from + to —.) Lehman proves the “only if” part of his theorem by taking P to be the
family of all trees containing every vertex (spanning trees).

If Mr. Shortt, as second player, has a win in the modified game, it’s very easy to see that
there must be two edge-disjoint spanning trees. For since an extra move is no disadvantage,
both players can play Mr. Shortt’s strategy! If they do this, fwo spanning trees will be
established, using disjoint sets of edges. Conversely, if two such trees exist, our previous
strategy for Mr. Shortt actually wins for him as second player, even in the modified game.

The more detailed part of Lehman’s argument establishes that, in a suitable sense, the
modified game reduces to the original one.

The Black Path Game

This elegant little game was invented by Larry Black in 1960. You can play it on a rectangular
piece of paper ruled into squares as in Fig. 19. At any time the squares that have been used
will each contain one of the three patterns shown in Fig. 19(b) and will include a path like the
black path in Fig. 19(a) which begins at the starting arrow. The player to move must continue
the black path by drawing one of the permissible patterns in the next square. You lose if your
move makes the black path run into the edge of the board. The numbers 1 to 8 show the order
of the first eight moves in our sample game, and the next player must now move in the square
marked 9. You’ll see that pattern 1. loses instantly, 2. wins quickly and 3. loses slowly.

¥
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Figure 19. Forming a Black Path.
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Figure 20. Black Path Game Board Divided into Dominoes.

We have a pairing strategy by which the first player can win on any rectangular board with
an even number of squares. He imagines the board divided into 2 x 1 dominoes in any way he
likes, for instance Fig. 20, and then plays so as to leave the end of the path in the middle of a
domino (which can never be the edge of the board!). On an odd by odd board it is the second
player who can win, by dividing all of the board except the opening square into dominoes.

Lewthwaite’s Game

Domino pairing (e.g. Fig. 21(b)) also enables the second player to win a game invented by
G. W. Lewthwaite in which 12 white and 12 black squares are slid alternately in a 5 x 5 box
from the starting position of Fig. 21 (a), and a player who, at his turn, cannot move any piece
of his color, loses. What happens if a player is also allowed to slide a row or column of 2, 3 or
4 squares, provided both end squares are of his color?
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Figure 21. Pairing Gives a Second Player Win in Lewthwaite’s Game.

Meander

Meander was also invented by Lewthwaite and is also played with 24 tiles in a 5 x 5 box, but
the tiles are now patterned as in Fig. 22(a), and are slid by either player. Figure 22(b) shows
the starting position. The winner is the first player to produce a continuous curve connecting
the boundary to itself and involving at least three tiles, as in Fig. 22(c). There are two versions
of the game. In the first, players alternately slide just one tile; in the other, a row or column
of 1, 2, 3 or 4 tiles may be slid as a single move.
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Figure 22. Meander.

Winners and Losers

Frank Harary has proposed a family of games, one for each polyomino, P, all played on an
infinite board. On alternate turns, Left makes a square black, and Right makes one white,

and Left’s aim is to produce a black copy of P, while Right tries to foil him. Harary calls P a
winner if Left has a winning strategy—otherwise a loser.

—
1 I ] | L] j

| u

Figure 23. Hales-Jewett Pairings Make Twelve Polyomino Losers.

The twelve polyominoes of Fig. 23 can be proved to be losers using the indicated Hales-
Jewett pairings, mostly found by Andreas Blass. If P contains one of these it is therefore a
loser. Martin Kutz notes that the lower left pairing does not suffice for the U-Hexomino, and
that the appropriate pairing consists of staggered sets of three rows in place of the sets of
two. The only polyominoes not containing one of these twelve are the twelve shown in Fig. 24.
Eleven of these are known to be winners, with known strategies which win in m moves on

a b x b board (see the figure). The last, called “snaky” by Harary, is also conjectured to be
a winner.
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Figure 24. Twelve Polyomino Winners with Board Sizes and Numbers of Moves (but Snaky's a
bit shaky).

The game of Pentominoes, played with the 12 pentominoes on an 8 x 8 hoard (if you can’t
place a non-overlapping piece, you lose) has been shown to be a first-player win by Hilarie
Orman, who suggests that a computationally challenging problem would be to solve the similar
game with the 35 hexominoes on a 15 x 15 board.

Dodgem

Colin Vout invented this excellent little game played with two black cars and two white ones
on a 3 x 3 board, starting as in Fig. 25(a). The players alternately move one of their cars one
square in one of the three permitted directions (E, N or S for Black; N, E or W for White)
and the first player to get both of his cars off the board wins. Black’s cars may only leave the
board across its right-hand edge and White’s cars only leave across the top edge. Only one
car is permitted on a square, and you lose if you prevent your opponent from moving.
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Figure 25. Colin Vout’s Game of Dodgem.
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Although the board is the same size as that for Tic-Tac-Toe, this game is much more
interesting to play. Table 1 contains the outcome of every position; the column gives the
positions of the black cars, the row those of the white, labelled by pairs of letters from Fig.
25(b). A blank entry represents an illegal position, since only one car is allowed on each square.

+ is a win for Black (Left),

—is a win for Right (White),

0 is a win for the second player,
# is a win for the first player.
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If you haven’t got our table drawn on the back of your hand, you'll find this little game
hard to play against an expert, who'll spring all sorts of little traps for you. It's often not a
good idea to push your car off as soon as you can since it may be more useful blocking your
opponent. In many situations it's a good idea to aim for the top right hand corner.

When you are expert, you can try playing Dodgem with n — 1 cars of each color, on an
n x n board, starting in the first column and row, with the SW corner empty.

Dodgerydoo

This game is played with two Dodgem cars on a quarter-infinite board. Now either playver may
move either car any distance North or West in a single move, provided it does not jump on to
or over the other car. If you can’t move you lose.

It’s not hard to see that

any position in which
the two cars are

on neighboring squares
is a P-position,

because whatever the next player does you can continue to shadow him. As a consequence,

any other position with
the cars in the
same row or column,
or in adjacent ones,
is an N -position,

because the next player can immediately creep one car up to the other. So in analyzing later
positions we might as well make it illegal to have both cars in the same row or column, or in
adjacent ones.

Let (z1,y1) and (z2,y2) be the positions of the two cars in this restricted game. Then on
these numbers we are playing a nim-like game with four heaps in which we can reduce any one
of the four numbers z,, xs, y1, y2 provided we ensure that neither x; — 23 nor y; — o is 0 or
+1. Since the z's and the y’s don't interact, we can regard this as the sum of two games, one
played on the x’s, the other on the y's. Table 2 gives the nim-values for either of these games—
apart from the positions described in the boxes above. An X denoctes an illegal position in the
restricted game.

The position (z1,y1), (22, y2)
is a Dodgerydoo P-position
just if f(z1, 22) = f(y1,92),

(since their nim-sum is then 0), where f(z1,z2) is the function given in Table 2.
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Table 2. Dodgerydoo Values, f(zxi,z2)

There doesn’t seem to be much pattern in the table, once we get away from the edge, but
at least the first few rows (and columns) are arithmetico-periodic. The (ultimate) periods
and saltuses in the first five rows are 1, 1, 3, 9, 36, and are valid outside the heavy line.
The same table solves two-car Dodgerydoo in three dimensions, for which the P-position
condition becomes

flar,22) ¥ flyr,y2) T f(z1,22) = 0.

Philosopher’s Football

Philosopher’s Football or PHUTBALL (registered J.H. Conway) for short, is a very playable
game that you can read about for the first time in this book. It is usually played on the 15 x
19 intersections of the board shown in Fig. 26, or on a 19 x 19 Go board, using one black stone
(the ball) and a large supply of white ones (men). All pieces are common to both players
and indeed both players have the same legal moves although their aims are different.
Start with the pitch empty except for the ball which starts at the central spot. Then each

player, when he moves, must

either place a new man at any unoccupied intersection

or  jump the ball, removing the men jumped over.
(He may not do both.)
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Figure 26. The Phutball Pitch and the First Five Moves of a Game.

A single jump of the ball may be in any of the eight standard compass directions, N, NE,
E, SE, S, SW, W, NW on to the first empty point in that direction provided at least one man
is jumped over. All the men jumped over are removed instantly. A player may take several
consecutive such jumps in various of the eight directions as a single move. But because the
men are removed instantly, the same man cannot be jumped over more than once in a move,
and no man can be placed on the board in a jumping move.

It is legal for the ball to land on any of the goal lines or side lines. It is also legal for the
ball to leave the board, but only by jumping over a man on the goal line, and only as the last
move of the game. In fact Left’s aim is to arrange that at the end of a move the ball is either
on or over Right’s goal line, while Right's is to get it on or over Left’'s. However a defender
can sometimes successfully use his own goal line by jumping the ball onto and off it during a
single move. In the standard opening,

Left, Right, Left, Right, Left,

will place the stones

1, 2, 3, 4, 5,

of Fig. 26, building chains towards their opponents’ goals. Right is now frightened by Left’s
threat to make a long jump over 1 and 3 and later establish a chain through 5. He therefore
makes two short jumps himself over 2 and 4.
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Figure 27. The Next Four Moves.

In the subsequent moves _
7, 8, 9,

of
Left, Right, Left,

Left tries to reestablish his chain while Right prepares the way for a sideways jump to defend
against this. If it were Left’s turn to move in Fig. 27 he could in one move make two jumps
over 7 and 9 and a longer jump over 1 and 3 (it would probably be better for him not to make
this last jump; as in Chess, a threat is often more powerful than its execution). However, it’s
Right’s turn so he jumps over 8, and the next few moves are shown in Fig. 28.

These are all rather subtle. Left's move 11 is much hetter than reinstating 8, which Right
could too easily tackle by placing a man where the ball was in Fig. 27 (after a jump of these
two stones, Left would find it very difficult to reestablish a useful connexion with the rest of
his chain). Right’s move 12 is even more subtle! A direct threat to win at this point would
make Left jump over 11 and 7, and arrive at a commanding position. Move 12 provides a way
back after this jump and also prepares the way for a move at 14, followed by a roundabout
triple jump over 11, 12 and 14, which both gets Right near to the Left goal line and removes
some pieces useful to his opponent. The move 12 has even more hidden secrets: if Left places
13, Right can make the jump over 11 and 7, and then any Left threat to connect with his old
chain equally helps Right to connect with 13 and 12.

Almost all these moves have become standard, but from now on experts differ. The game
has many subtle tactics (tackling, poisoning one’s opponent’s threats, devastating U-turns, .. .)
and we'll only offer a few hints.
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Figure 28. The Game Continues.

Try not to jump until you really have to, and then only as far as you really must. If you
will have a stone within three of the place your opponent will jump to, but not a knight’'s move
away, you can probably use it to get back and needn’t be too frightened by his jump (which he
probably shouldn’t be making!). Remember that a stone a knight's move away from the ball
is almost always useless. Such stones are called poultry (a corruption of paltry and parity).
A threatened chain becomes much more useful if it can be jumped along in several different
ways. Don’t forget that the stone yvou place may be useful to your opponent—possibly in a
devastating U-turn.

A pleasing feature of the game is that an expert can still enjoy a game against a novice
provided they start with the ball much nearer the expert’s goal-line.

Like Chess and Go, and unlike most of the games in this book, Phutball is not the kind of
game for which one can expect a complete analysis. In fact, Demaine, Demaine, and Eppstein
have shown that the problem of determining whether a player has a win on the next Phutball
move is NP Hard. Even one-dimensional Phutball has not been completely analysed, although
a restricted version of the one-dimensional case has been solved by Grossman and Nowakowski.




Extras

Count foxy words And stay awake Using lively wit

is a correspondent’s ingenious answer to Anne Duncan’s question.

Amazons

Amazons was invented by the Argentine Walter Zamkauskas in 1988, and first published
in the magazine El Acertijo in 1992. In 1993, Michael Keller, the editor of World Games
Review, introduced it to a postal gaming club called the Knights of the Square Table (NOST).
In January 1994, an English version of the rules (translated by Keller) appeared in World
Games Review #12. The first international tournament was played by fax in 1994-95 between
Argentina and the U.S., which ended in a 3-3 tie. The game is played on the squares of a
square board, usually 10 x 10 or 8 x 8.

An Amazon is an immortal chess queen. Each side begins with several, usually 4. At
each turn, a player selects one of his Amazons, moves her, and then completes the turn by
shooting an arrow from the Amazon just moved. This arrow also moves like a chess queen,
as far as desired in a straight line, either horizontal, vertical, or diagonal. The arrow “burns
out” the square on which it lands, often denoted by placing a black Go stone there. Burned
out squares are unplayable for the rest of the game. Neither Amazons nor arrows may jump
over other Amazons or over burned out squares. The game ends when one player is unable to
move because all possible moves of all of her Amazons are blocked.

Latestage Amazon endgames often decompose into sums of disjoint active regions. Each
such region has a conventional value. Berlekamp [2000] and Snatzke [2002] have shown that
the canonical forms are often very complicated, but that their thermographs are often quite
tractable.

T
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g

Figure 29. An Amazons Endgame Problem.
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Although many Amazons tournaments have been played on the Internet, no significant lit-
erature has yet appeared. Most players think the first player enjoys some advantage, although
there is a wide range of opinion about how big that advantage might be.

Who can win the Amazons endgame shown in Fig. 297 Black, White, First, or Second?
Answer can be found on page 761 at the end of this section.

Checkers

Checkers is a very popular classic board game, also known as Draughts. It has long attracted
the interest of artificial intelligence experts, most notably Jonathan Schaeffer [1992]. Although
positions do not tend to decompose, Berlekamp [2002] has composed a problem, a sum of
positions in Checkers, Chess, Go, and Domineering, that emphasizes subtle differences between
the values of different winning checkers positions.

Chess

Chess has perhaps attracted more attention from artificial intelligence experts than any other
game. Although most positions do not decompose into smaller pieces that can be analysed
in the style of Winning Ways, Noam Elkies [1996, 2002] has discovered and composed many
fascinating ones that do.

Cherries

The vertices of a graph are coloured blue, red or green. Right removes a vertex of minimal
degree which is either red or green and Left removes a vertex of minimal degree which is either
blue or green. Note: if all the minimal degree vertices are blue then Red does not have a
move. Normal Play rules. Large classes of positions have been studied with values known to
be integers, half-integers, and star.

Clobber

Clobber was invented in the summer of 2002 by Michael Albert, J. P. Grossman, and Richard
Nowakowski. The first tournament was held at an academic conference on combinatorial game
theory in Daghstuhl, Germany, in February 2002.

The legal moves of any piece are the intersection of a chess king and a chess rook, i.e.,
one square in any of four directions. We call such a piece a “duke.” The game begins with
all squares on a rectangular board occupied according to their colors on a checkerboard: each
white square occupied by a white duke, and each black square by a black duke. Capturing
occurs as in chess, one moves onto the square occupied by the opponent’s duke, which is then
removed from the board. But in Clobber, every move MUST be a capture. It is easily seen
that the value of the game is all-small, because either side has a legal move just if there is
some pair of adjacent pieces of opposing colors.

Clobber endgame positions usually decompose into sums. A wide and fascinating range of
atomic weights has been observed.
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Figure 30. A Clobber Endgame Problem.

The first international Clobber problem composition contest concluded in August 2002.
The winning entry, composed by Adam Duffy and Garrett Kolpin, is shown in Fig. 30. Who
can win? Black, White, First, or Second? Answer can be found on page 761 at the end of this
section.

Go

Go is THE classical Asian board game, which has been popular for many hundreds of years
in Japan and for several millenia in China. The many active Go clubs and sponsored tour-
naments throughout Korea, Japan, China, and Taiwan support well over a thousand active
professionals. There are now at least 50 active computer Go-playing programs, which compete
against each other in major annual tournaments. Go has proved even more challenging to
artificial intelligence researchers than chess; every program yet written can now be routinely
defeated by its author and perhaps about one million other human Go players who are ranked
5 kyu or better.

Although there are more than a half-dozen modern dialects of the rules, they all agree so
often that endgame positions whose outcomes depend on the fine points of the rules are very
rare. Loopy positions (called Kos and superkos) are possible, but the commonly occurring such
possibilities are all prohibited by every dialect of the rules. Virtually all latestage endgame
positions decompose into sums. Values tend to be relatively complicated, but they can often
by simplified by chilling (as defined on page 187 in the Extras to Chapter 6), a transformation
that is nearly always reversible because Go positions satisfy special Diophontine constraints,
i.e., their stopping positions must not only be dyadic rationals; they must be integers.
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Generalized thermography provides a very powerful tool for evaluating earlier endgame po-
sitions. The folklore that professional Go players have taught for generations includes methods
which we now view as effective techniques for finding approximate thermographs of Go posi-
tions quickly. Current research in Mathematical Go addresses earlier endgame positions, many
of which can often be evaluated by modifications of the decomposition methodology even when
they do not strictly decompose.

Professional experts and tournament directors are now approaching a global consensus that
the value of playing first is worth about 6 or 7 points. Although most of the Go teachings
are orally transmitted from each generation of professional players to their pupils, there are
over a thousand books in Asian languages, over a hundred of which have been translated into
English, and one book in English that has been translated to Japanese.

Konane

Konane, also called “Hawaiian Checkers”, is the classic board game of ancient Hawaii. Like
Clobber, the game begins with all squares occupied: white stones on all the white squares and
black stones on all the black squares. Then one pair of adjacent stones is removed from the
centre of the board or as near to the centre as possible. Thereafter, the legal move is to select
one of your stones and jump (either horizontally or vertically) over an opposing stone. As in
checkers, the jumped stone is removed from the board. Multiple jumps in a straight line are
allowed, but multiple jumps that would turn at right angles are prohibited. The game ends
when one player is unable to move,

Several state parks in Hawaii have displays showing relics of ancient boards and sets of
stones gathered from nearby beaches: white stones were coral and black stones were volcanic.
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Figure 31. A Konane Endgame Problem.
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A popular board size was 18 x 18. But unfortunately, the ancient Hawaiians had no writing.
Although there are reports of historical games played in the king’s palace, no written records
of any expert games survive. The game has declined in popularity in modern Hawaii, and
there does not seem to be any surviving folklore about what might constitute a strong opening
strategy in this game, nor about how large an advantage, if any, is enjoyed by the player who
moves first.

Latestage endgame positions decompose into sums. Many familar values occur. The reader
may enjoy working out the Konane endgame problem shown in Fig. 31. Who can win? Black,
White, First, or Second? Answer can be found on page 762 at the end of this section.

Reversi-Othello

The game of Reversi was invented by Lewis Waterman in England in 1888, and has been
more recently popularized as Othello. It is usually played on the squares of an 8 x 8 board.
Pieces are disks, white on one side and black on the other. In the initial position, there are
4 pieces in the centre of the board, 2 white and 2 black. A legal move consists in placing a
piece of your color onto an empty square of the board and capturing a vertical, horizontal or
diagonal sequence of contiguous pieces enclosed between opposing pieces. The captured pieces
are turned over to become the color of the captor. Moves that fail to capture anything are
illegal. The game ends when a player is unable to move because all pieces on the board are
of the opponent’s color, or because the board is fully occupied. In the latter case, the score is
the number of pieces of each color in the final position.

Othello positions do not decompose into sums. The game has attracted considerable at-
tention from the artificial intelligence and complexity theory communities, who have proved it
to be PSPACE complete via transformation from Generalized Geography played on bipartite
graphs with maximum valence 3.

Scrabble

Scrabble is a popular word game in which players draw letters printed on tiles and try to
score points by playing them onto a board in patterns that form words in the dictionary.
Because players cannot see either their opponents’ tiles nor those not yet drawn, the game
lacks complete information. For this reason, as well as rules which are defined only via a
lengthy dictionary, this game would appear not to qualify for inclusion in Winning Ways.
However, there is now a new genre of Scrabble problems that we feel merit the attention of our
readers. These are positions in which you must find a way to win the game no matter which
unseen tiles are held by your opponent and which remain untaken. Although most popular
scrabble players try only to think of the play that will maximize their additional score on the
next turn, these problems require strategies which plan several moves ahead.

Shogi

Shogi is Japanese chess. The hoard is slightly larger and the pieces have somewhat different
moves than in Western chess. But the most significant difference is the possibility of “dropping”
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a previously captured Shogi piece back onto the board under a much wider variety of conditions
than pawn promotions in western chess.

Sowing Games

There are many such games, notably Mancala, Wari (variously spelt), Ayo and Tchouka(illon).
Bulgarian Solitaire, popularized by Martin Gardner and solved by Igusa, also comes under this
head, as do so-called chip-firing games that have attracted the attention of combinatorialists
and complexity theorists, and there is now a considerable literature. In a typical sowing game
there is a sequence or cycle of bowls, some of which may contain seeds. A move is to take some
seeds and ‘sow’ them, one or more at a time, into the bowls. Often the object is to accumulate
the majority of seeds in specified bowls.

Answers to Problems

The Amazons position in Fig. 29 is the sum of three independent regions: the Northwest
(NW), the northeast (NE), and the South (S). Treating bLack as Left, the values of these
regions are *, +1/4, and -1/2 respectively. So White can win. If Black goes first, a dominant
line of play is Black in the NW, then White in NE, Black in NE, and White in S, after which
the position is as shown in Fig. 32 and each regional value is 0.

The Clobber endgame problem of Fig 30a is the sum of six regions. These can be conve-
niently labelled with the capital letters shown in Fig 30b. We take Left as bLack. Each of
the the six regions is an all-small game. Computations described in Chapter 8 at the end of
Volume 1 of Winning Ways yield the atomic weights shown in Table 3.

The total weight is —145. The value of region F is *2, which is remote enough. So the
first player can win, even though it is somewhat challenging for Black to do so. More details
can be found at www.gustavus.edu/ wolfe/games/clobber.

&

Figure 32. Four Moves after Fig. 29.
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Region A | B C D |E|F| Sum
Atomic Weight | [* | 24 | =242 | J* [ -1 | 0 | =144

Table 3. Values and Incentives for Fig. 31.

The Konane endgame problem of Fig. 31a virtually decomposes into the sum of ten regions
as labelled in Fig 31b. We again take Left as bLack. The values of the regions, ordered by
their incentives, are given in Table 4. Both of the possible inter-regional interactions shown in
Fig 31b are irrelevant, because in each case, the value of the pair of combined regions is the
same as it would be if they were further apart.

Region A B C D F F G| H I

Value ik + *2 1 -1 *3 | =2 | T 1
AR i*|0 —i #2,43 | T -1 #3, %2, % | * —% T 1
AL 2|0 | =1 | #2,%3 | L, L | {1041 | #3562, | % | =2 | Lx, || Tx

Table 4. Atomic weights for Fig. 30.

If White plays first, his dominant incentive is on A, after which the value is -1/4 ish, clearly
negative and a straightforward win for White. But if Black plays first, her dominant incentive
is on E, after which White's dominant response is on E*. Black’s next dominant move is on
A, yielding an overall total value which is a positive infinitesimal, so first player can win.
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496, 499, 506-508, 516, 529, 550-552, 554
556, 600, 610, 617, T11
colored, 532
Col, 38, 39, 47-51, 67, 68, 75, 145, 224
cold game, 299-300, 307, 316, 317
cold position, 301, 304-306, 322
cold war, 299302, 304, 306, 307
cold work, 316
Coldcakes, 300
colon notation, 243, 244
Colon Principle 191, 193, 194, 220, 355
coloring, 38, 145, 147, 187

Index

Commandment,
Lukewarmth, 307, 310
Markworthy, 317
common coset, 110
common values, 110
comparing games, 35, 36, 122, 348
compendium, 109, 387
complementing effect, 405
complete, exptime, 763
complete graphs, 583
complete, NP, 224, 227
complete, PSPACE, 224, 227, 760
completing a box = complimenting more, 541
complete in exponential time, 224
complete in Pspace, 224
complete information, 14
complicated value, 707, 708
complimenting move, 379, 405-407, 541, 552
component, 20, 22, 31, 32, 35, 278, 281, 286,
288-289, 299-302, 307, 312, 325-326, 396—
398, 415
cold, 299, 300
hot, 299, 300
loopy, 410
tepid, 327
compound
conjunctive, 278, 284, 286
continued conjunctive, 286
disjunctive, 289
impartial, 396
selective, 299, 300
severed selective, 312
shortened selective, 312
subselective, 396
compound game, 31, 299
compound thermograph, 164
computable function, 630
computing power, 163
confused, 31, 68-71,
confusion interval, 121, 149-151, 158, 163
congruence modulo, 16, 507
conjecture, 112
conjunctive compound, 278, 286
Connect-Four, 764
Connell, Ian G., 78
continued conjunctive compound, 286
Contours, 587, H88
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contract, 126
control, 544-546, 574, 575
convention, normal play, 14
Conway, J.H, 18,22 52 T8 117, 123, 144, 188,
225, 262, 298, 377, 446, 454, 489, 539, H98,
668, 7H2
Cook, Stephen A., 224, 225
Coolcakes, 308, 309, 321
cooling, 151, 152, 154, 167, 179, 231, 690
formula, 151
Copper, Mark, 607
coprime, 404
Corinthians I, 13.12, 69
cork-screw, left-handed, 379
corner tactics, 654-657
cornered King, 658-661
cosets, common, 110
costs, 161
counters, heaps of, 41
Couples, Seating, 44, 45, 132, 133
coupons
stack of, 693
cousin, 101, 103-105, 107, 109, 114, 116
coverlet, 223
Cowley, Abraham, 119
cows, 145147
Coxeter, Harold Scott Macmillan, 78, 117, 538,
539
Cram, 141, 143, 298, 502-506
cricket, 15
criminal, minimal, 194, 214
critical position, 687, 690
critical rank, 710
critical temperature, 167, 168, 171
cross, h82, 585, 603, 607
Crosscram = Domineering, 119, 298
Usirmaz, Lasld, 767
Culberson, J., 766
Clrtis, Robert Turner, 468, 469
custodian capture, 666
Cutcake, 25, 26, 31, 32
Hickerson's, 51
Cutcakes, 284-285, 292-294, 300
cutting, 284, 292
cycles, 192-194, 213-214

D.A.R., 361
D’ Alarcao, Hugo, 607

775

D.UD.EN.EY, 521, 523
Damf, J. E., 225
daggered position, 677, 710
danger, 670
dark positions, 677
darkening, 684, 694, 686
darkening move, 677, 678, 685
date, 395, 410
Davies, D.W., TGT
Davis, Morton, 766
Dawson’s Chess = -137, 89-92, 101, 109
Dawson’s Kayles = -07, 15, 90, 93, 95, 101,
109, 261, 438, 444
Dawson’s vine, 566, 569, 576
Dawson, Thomas Rayner, 89, 117
dead animals, 135
deadly dodge, 548
Death Leap principle, 127-130, 135
deceptive defence, 548
decomposing, 568, 569
decrement
altitude, 700, 701, 703
decremented index, 705
Definite F&G boards, 674, 685-636
degree
cooling by one, 179
of loopiness, 361
of upon, 375
deleting dominated opinions, 62, 63, 75, 77
delphinium 47, 199, 242,695
lush, 675, 677, 681, 684
trimmed, 686
Welton's, 695
Delta, 697
Region, 697
Demaine, E. D., 755, 763, 767
Demaine, M. L., 755,763, 767
Denim, 534
deriders of zero, 483
Descartes, Blanche, 96, 177
deuce, 357
devastating U-turns, 754
devil
square-eating, 643
devil’'s label, 195, 209
diamonds, 359
Difference Rule, 74, 404
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digits
binary, 99
code, 92, 93, 98-106, 113, 117
Dim, 98, 442
with Tails, 404
disarray, 95
discount, 161
disentailing, 401
disguise, 95
disincentive, 148
disjunctive compound, 278, 289
dissection, 128, 129, 134
disassociation, thermal, 168
distributive law, 475, 483
Dividing Rulers, 436-437, 469
do or die donation, 548
Dodgem, 749-751
Dodgerydoo, 751
Dodie Parr, 545-550, 558, 569, 570, 572, 575
578-580
dog with leftward leanings, 4
dogs, T11
Dollar Game, Silver, 491, 492, 535
dominated option, 62, 63, 75, 77, 126, 149
Domineering = Crosscram, 119-122, 139, 142,
144, 153, 177, 298, 366
Domineering, Impartial = Cram, 142, 144, 298
Domineering, 690, 757
Dominoes, 119
Don't-Break-It-Up Theorem, 213, 214, 216
Doors, 478, 481, 482
Dots-and-Boxes, 15, 95, 225, 539
dots+doublecrosses=turns, 546, 571
Double Circle, 691
Double Duplicate Nim, 114
Double Hackenbush, 343
double infinity, 334
Double Kayles, 99
double-cross, 541, 543, 544, 571
double-dealing, 542-544
double-down, |}, 68, 69, 71
double-six, 405
double-up, 1, 68, 69, 71, 242
doubling, 620
of nim-values, 98
down |, 68, 151
downon*, 708

Index

down-second, 236

downsum, 336, 355, 357, 360

draughts, 757

Draughts=Checkers, 18, 224, 226, 227, 757,
763

draw # tie, 14

drawn, 14, 335

dud = deathless universal draw, 337-338, 353

Dress, Andreas, 117

Dudeney, H. E., 82, 117, 539, 767

Duffus, Dwight, 312

Dufty, Adam, 758

duke, 624, 644645, T57

Dukego, 644-646

Duncan, Anne, 732

Duplicate Kayles, 99, 444

Duplicate Nim, 114, 116

duplication of nim-values, 94, 98, 99, 114, 116,
444-445

Duvdevani, N., 79

Eagle, Edwin, 768
early F&G values, 689
early sequence, 688, 689
early values, 700
early-stage, 689
earwig, 600
Eatcake = Bynum’s Game, 136, 234, 289
Eatcakes, 234, 286, 280202, 205297, 308
eating, 643
eccentric cases of atomic weights, 231, 232,
9237, 239, 249, 251
economy, underlying, 151
Eddins, Susan, 607
edge, 40
attack, 646648
corner attack, 650-652
defence, 648, 649
edges, 40, 43, 135, 345
bLue and Red, 2-6, 29, 30, 77, 198, 201,
230, 237, 329, 343
grEen, 29, 30, 33, 40, 41, 190-196, 198202,
204206, 210, 211, 218, 220, 221, 225, 237
251, 330
pink and pale, 343-344
Edmonds, J., 767
Eight-in-a-row, 740
El Acertijo, 756
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Eliot, Thomas Stearns, 461, 534
electric charge, 251, 253, 254
Elkies, Norm, xvii, 757, 763
Emperor Nu, 609, 610
empty numbers, 471
empty set, 82, 399
encirclement, 665
end, quiet, 617, 618
ender, 329-330
end-position, 616, 617
ender, 610
Endgame, 416
endgames, Go, 187
ending condition, 14, 35, 46, 47, 329
English Solitaire board, 710
enlarged flow, 204, 311
Enough Rope Principle, 16, 547, 736
entailing, 379, 396-405
Epp, Robert J., 539
Eppstein, D., 755, 767
Epstein, Richard A., 668
Epstein’s Game, 518-520
equally favorable, 35
equally uppity, 242, 245
equitable, 157-161, 169-172
equivalences

Nimstring, 565

Twopins, 503, 567, 568
Erdés, Paul, 767
Erickson, Jeff, 690, 766
Ernst, M. D., 690, 765
escapade, 677, 679-681, 684, T03,
eternal games, 46, 379
Etienne, D., 766
etiquette, 631
Evans, Ronald J., 767, 768
even, 279, 281, 282, 287

evicts!, 306

timer, 303, 305, 307, 314, 317
Even, Shimon, 224, 225
Evie Parr, 545-550, 558, 569, 570, 575, 578
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evil = even, 287, 307
evil mumbers, 110, 463, 464
exactly periodic, 86
exceptional altitude decrements, 704
exceptional values, 90-92, 101, 108

704, 709
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excitable, 157-161, 169-172

excluded tolls, 306

excluded values, 111

exemptions, tax, 151

Ex-Officers Game = -06, 101-103, 445, 504

exp time, 763

explosive nodes, 49, 50

exponential-time algorithms, 224

extended thermograph, 161-162

extended thermography, 759

Extras, 14, 46, 73, 101, 134, 180, 220, 255, 292,
325, 369, 408, 442

F&G = Fox-and-Geese
Museum, 705, T06-708
position, circled, 682, 683
Values, initial, 697, 699-701
fair board, 646, 664
Fair Shares and Unequal Portions, 380, 394
Fair Shares and Varied Pairs, 379, 410
fairy chess, 117
fairy tale, 312
Fajtlowicz, S., 632
Falada, 312-314, 319-321, 325-326
Falkener, Edward, 767
Fano's Fancy Antonim Finder, 495
far star = remote star, 230-232, 236-240, 243
251, 258, 259
farm, 146, 488
favorite, 262, 278, 282, 284, 289
‘elton, G. E., 768
fence, 488
Fencing, 488
Ferguson's Pairing Property, 86
Ferguson, Thomas S., xvii, 86, 117, 430, 454,
539, 766
Fermat powers of two, 476
Fermat, pierre de, 476
ferz = fers, 641, 642
Fibonacci Nim, 517
Fibonacci numbers, 517, 518, 520, 535
Fibulations, 520, 535, 537
fickle, 413, 423-425, 429, 432, 434, 514, 533
field, 145, 312-314, 325-326, 483
fifth column, 411
fine print, 126
finicky figures, 323
finishing line, 407
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firm, 413, 423-425, 429, 432, 514
first
bite, 323
cousin, 101, 103-105, 107, 109, 114, 116
eaten strip, 295
home, 278, 283, 320, 322
horse stuck, 281
off, 312
one-by-one cake, 284
player wins, 28-30
strip, 295
fit 22, 251
Fitted Carpets, 479
Five-in-a-row, 378740
Fives
Acrostic Mock Turtle, 487
Ruler, 470
Staircase, 499
Triplet, 470
fixed 335
Flanigan, James Allen, 377, 445, 539
Flanigan’s Game = .34, 504
flat, 430
Fleischer, R., 763
floor, 51, 75, 311
flow, 202, 204-206, 208, 209, 222
flow, cash, 126
Flow Rule, 201, 202, 204, 210
flower, 29, 30, 33, 35, 36, 47, 66, 67, 190, 195,
199-201, 210, 230, 240, 242, 245, 246, 364
flower garden, 190, 199, 229, 230, 240
flowerbed, 242, 244, 246
flowerstalk = stem, 36
flowers, Hackenbush, 675, 695
foot, 211, 212
Football, Philosopher’s, 752-755
Fondanaiche, Philippe, 533
Ford, Lester R., 205, 212, 225
forging, 389
fork, 332
threat, 740
form
canonical, 22
simplest, 22
standard, 101, 103-105, 107-109, 114
formation, 677, 686, 702, 705
central, 695

Index

circled, GR7
migrating geese, 703, 709
Formula, Cooling, 151
foundations for thermographics, 155
Four-in-a-Row, 737, 738
Fox Game = Hala-Tafl, 666
Fox's Safe Dancing Haven, 695
Fox-and-Geese, 15, 666, 669
value of, 673
Fox-Flocks-Fox, 673, 674, 697, 709
FOXSTRAT, 684-687, 692, 693, 697
FOXTAC, 681684, 687, 692
fractional atomic weights, 234, 236
multiples, 256
Fraenkel, Aviezri S., xvii, 18, 78, 224, 226, 412,
489, 517, 539, 763
France, 736
free, 335
free your fetters!, 565
freezing point, 154, 168-172
French Military Hunt, 15
frieze patterns, 509-512
Freystafl, 666
Frogs, see Toads
Fulkerson, Delbert Ray, 205, 212, 225
function
computable, 630
remoteness, 279-286
ruler, 98, 436, 437, 470
Steinhaus, 279
suspense, 286289
Welter, 193, 506-514
Funkenbusch, William, 768
furniture, redwood, 211, 212, 213-217, 222
fuse, 192
fusion, 192-196
Fusion Principle, 192-195
fuzzy Howers, 29, 30
tuzzy games, 28-33, 35, 36, 39, 42, 239
fuzzy positions, 28, 32, 33

G-ness, 422

G-raph, 205-207
G-sequence = nim-sequence
G-string, Air on a, 97
G-string, 524

G-value = nim-value

Gale, David, 117, 768
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gallimaufry, 68, 75, 757
Galvin, Fred, 253
galvinized games, 253, 254
game
acrostic, 482-487
additional subtraction, 395
annihilation, 224
big, 65, 75, 202, 206, 222
birthdays, 417
cheap, 387
cold, 145, 299, 300, 307, 316, 317
comparisons of, 25
compendium, 109, 387
compound, 31, 299, 312
coolest, 173
eating, 136, 234, 286, 289-292, 205-297
entailed, 379, 396405
equitable, 157161, 169, 170, 172
eternal, 46, 379
excitable, 157-161, 169-172
fairly hot, 307
finite, 46, 115
fuzzy, 28-33, 35, 36, 39, 42, 239
galvinized, 253, 254
half-tame, 423, 435-437, 444, 445
hard, 211, 217, 223
hexadecimal, 116, 117
hot, 125, 133, 145-174, 176-185, 187, 225,
300-308, 316, 326
identification, 65
impartial, 14, 40, 56, 82, 84, 196, 220, 281,
283, 284, 280, 291204, 296, 297, 330, 379,
396
impartial loopy, 275, 379-412
impartial misere, 275, 413, 446
locator, 464
loopy, 15, 275, 327, 334-377, 396, 758, 764
many-dimensional, 220, 488, 742
map-coloring, 38, 145
misere 281, 286-288, 290, 291-294, 312, 413~
451
misére Grundy's, 416420
misére Kayles, 446-451
misére octal, 413-451
misere Welter's, 514
negative of, 33-35
NP-hard, 224, 225
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of encirclement, 665

of pursuit, 15, 669-729

octal, 101-116

one-horse, 278

ordinal sum, 220

partizan, 15, 65, 187, 275, 292, 295, 312,
376, 379

reduced, 446

reserves, 414

restive, 425-426, 432-438

restless, 432-435, 443

short hot, 225

simplifying, 60, 62, 63, 75, 77

subtraction, 84, 86, 87, 08, 395, 430, 442

switch, 121-125

take-and-break, 81, 82, 84, 86, 87, 89-96,
98, 99, 101, 103-105, 107-117

take-away, 82, 87, 100, 319

tame, 417, 422 438, 443-446

tamable, 425, 446

tartan, 476482

tepid, 306, 308, 316, 327

tiniest, 125, 126

tracking, 65, 222

trees, 40

two-dimensional, 332, 333, 473-487

wild, 430

with cycles, 376

zero, 4, 9, 33, 41

Game (see also game)

Black Path, 746, 747

Bynum’'s = Eatcake, 136, 289

Epstein’s, 518-520

Ex-Officer's Game = .06, 101-103, 445, 504

Falada, 320-321

Flanigan's Game = .34, 504

Fox = Hala-Tafl, 666

G4G4AGAG4, T5T

Grundy’s, 15, 96, 112, 310, 434, 439-440,
444, 690

Kenyon's, 116, 117

L-, 384, 408, 412

Lewthwaite's, 747

Northcott’s, 55

One-Star = 4.07, 102, 103, 604

Ovid’s, 736

Put-or-Take-a-Square, 518-520
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Ruler, 469, 470
Sato’s Maya = Welter's, 427
Shannon Switchin, 744-746
Silver Dollar Game, 491, 492, 535
Welter’s, 506-515
Wythoff’s, 15, 60, 74, 427
gaming tables, 492, 525, 526
garden 33, 199, 229, 230, 240
Garden of Eden, 705
Gardner, Martin, xvii, 18, 52, 144, 298, 502,
607, 640, 668, 729, 761, 768
Garey, Michael R., 217, 224, 226
Gasser, Ralph, 737, 764, 768
gathering, 354
Gauss, Karl Friedrich, 254
gee-up, 247
Geese, see Fox-and-Geese
Geese'’s Landing, 697
Geese's Strategic Landing Plan, 696
GEESESTRAT, 686, 693, 697
GEESETAC, 686
Generalized Geography, 224, 760
Generalized Hex, 224
Generalized Kayles, 224
generalized thermography, 759, 764
genetic codes for Nim, 605, 606
genus, 422446, 501, 504, 587, 588, 590, 597,
604, 607
Geo., 641, 642-644, 646-648, 650, 652, 654,
657, 658, 661, 663, 664
Geography, 517, 539
geraniums, 47, 199, 242, 675
Gerritse, Richard, 621, 624
gift horse, 72, 77
Gift Horse Principle, 72, 77
Gijlswijk, V. W.,, 384, 412
Ginny, 387-391
giraffe, 205-206
glass of wine, 379-380
glass, magnifying, 151
Go, 16, 18, 161, 187, 188, 224, 226, 755, 757
759, 764
Go-Bang, 740
Go-moku, 14, 740, 743
Qébel, Frits, 118
Godd, 195, 226
Godd’s label, 195

Gold Moidores, 464, 465
Goldbach position, 382
Goldbach’s Nim, 401
golden number, 75
Goller, Nicholas E., 386, 408
Golomb, Solomon, xvii, 644, 741, 768
good = odd, 287, 307
good child, 427
good move, 16, 22, 196, 397
Good, Irving John, 226
Goodell, John D., 764
GOOSESTRAT, 677, 678, 687, 695
GOOSETAC, 675, 676, 695
Goose Girl, 312
Gordon, Pritchett, 607
grafting plumtrees, 354
Grantham, Stephen Brian, 273
graph, 145-147
bipartite, 222, 583
complete 583
spanning tree of, 217, 222
Nimstring, 556
non-planar, 551
graphic picture of farm life, 145, 146
arass, 40, 42, 199, 240, 242
Great Hall, 372
greatly-valued carpet, 480
Great-Aunt Maude, 387
Greek gift, 547
Greek letters, loopy, 3, 35, 364
Green, Trevor, 533
green
chain, 40
edges, 29, 30, 33, 41, 190-196, 198-202, 204
206, 210, 211, 218, 220, 221, 235, 237, 251,
330
girl, 192, 103
Hackenbush, 39-42, 190-196, 225
jungle, 198, 199, 201, 220, 221
193
snake, 40
tinted nodes, 204
tracks = paths, 202-210
trees, 191-193
greenwood trees, 34
grey heap, 532
Gross, Oliver, 744
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Grossman, J. P., 755, TH7, 763, T68
ground (=earth), 193, 550, 551
grounding cycles, 193, 196
grown-up picture, 43
Grundy
scale 87, 90, 91, 94, 95, 101, 398-399, 406
Skayles, 91
Grundy, Mrs., 310
Grundy, Patrick Michael, 42, 56, 79, 117, 220,
221, 333, 417, 444, 454
Grundy's Game, 15, 96, 112, 434, 439-440,
444, 690
misére, 416-420
wild animals, 431
Grunt, 472, 473, 481
Guiles = -15, 94, 101, 103, 436, 444
Guy, Michael John Thirian, 464, 520, 535, 621
Guy, Richard Kenneth, 18 89, 99, 109, 117,
118, 144, 489, 539, 621, 640, T68

hack, 675, 684, 693, 695
Hackenbush
Blue-Red, 1-6, 17, 20, 23, 27, 28, 77, 78,
197, 211-217
Childish, 43, 52, 157, 237
Double, 343
Green, 33, 34, 189-196
Hotchpotch, 29, 33, 36, 37, 47, 66, 67, 197-
210, 218222, 237, 242246, 251
infinite, 327-332, 344, 345
is hard!, 211, 217
loopy, 343-345
number system, 78
picture, 1-5, 189-195
string, 22, 23, 77, 78, 194, 195, 327-331
von Neumann, 606
Hackenbush companion, 693
Hackenbush, flowers, 675, 695
hacking toll, 686
Haigh, J., 766
Hala-Tafl, 666
Hales, A. W., xvii, 740, 741, 768
half-move, 4, 7, 9, 19, 20
half-off, 356
half-on, 356
half-tame, 414, 423, 435, 444
halving, 620

of nim-values, 195
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handouts, 547
Hanner, Olof, 188
Harary, Frank, 748
Harborth, H., 768
hard game, 211, 217, 222, 223
hard problems, 223-225
hard redwood bed, 217, 222
hard-headed, 179
hardness, 211, 217, 223, 225
Hare and Hounds, 711-729
harmless mutation, 562, 564
Harrocks, 517
Harry Kearey, 318
Hashimoto, T., 762
Hawaii, 16
Hawaiian checkers, 759
head

animals’ 205

girl’s 193, 196

losing your, 222

severed, 205, 220-222

shrunken, 220-221
heaps, see also Nim-heaps
heap, see also Nim-heaps

black, 532

colored, 532

grey, 532

quiiddity, 534

white, 532
hearts, 359
heat, 125, 132, 145, 299
heat, latent, 307
heating, 167, 173, 690
height, 675, 686, 687, 698, 703
Hein, Piet, 744
Hensgens, P., 762
hereditarily tame, 425
heuristic discussion, 158, 159
Hex, 226, 744, T67, 768
hexadecimal games, 116, 117
hexagon, 744
Hexomino, 748
Hi, 609, 610, 617, 631
hi, 355, 356
Hickerson, Dean, 51
Hickory, Dickory, Dock, 521
high atomic weights, 706
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high central region, 697, 698
high region, 688, 692,693, 700, 701
high scrimmage region, 697
higher ground, 209
hierarchy, 96
highway, 364, 391
hilarity, 380
Hilbert Nim, 333
Hillman, A. P., 7¢
Hirshberg, Susan, 765
Hnefatafl, Saxon, 666
Hockey, 15
Hogan, M. S., 517, 539
Hoey, Dan, 112
Hoffman, Professor = Lewis Angelo, 768
Hoggatt, Vern E., 79
Holladay, John C., 118, 584
Hollosi, A., 762
hollyhocks, 36
home, 277, 280, 281, 286, 289, 320, 322, 386-
387
Honest Joe, 158, 159
Hopscotch, 737
Horrocks, D. G., 539
horse, 27, 28, 278, 281-284, 286, 292-293, 312,
314, 320, 326
also-ran, 286
favorite, 278, 282, 284, 289
gift, 72, 77
outsider, 286, 289
racing, 288
remote, 278
slow, 286, 289
working out, 28
Horsefly, 395, 411
Hoshi, Y., 766
hot, 300, 301, 322, 326, 355-356, 710
hot, 125, 133, 145, 149, 151, 171, 173, 225, 300,
304, 307, 316
battle, 145, 299-308, 310, 322, 327
coating, 322
component, 299-300
game, 125, 133, 145, 171, 173, 225, 300, 307,
316, 317, 326
position, 149, 304
work, 316
Hot Atomic Weight, 706

Index

Hotcakes, 299-304

Hotchpotch, Hackenbush, 38, 47, 66-68, 198—
202, 204206, 208211, 225, 230, 238, 251,

Hotstrat, 188

Hound-Dog Position, 724, 729
Hounds, see Hare, 711-729
house and garden, 33

House of Cards, 357-361
Howells, D. F., 539
Huddleston, Scott, 640
Hudson, Paul D.C., 539
Huntjens, M. P. H., 740, 767
Hutchings, Robert L., 615-617, 631
Hyperspace Tit Tac Toe, 768

Icelandic sagas, 666
idempotent, 693
Igusa, K., 761, 766
lida, H., 762, 763, 765, 766
lida, T. 766
illegal, 320, 322, 404
Imai, Hiroshi, 766
imminent jump, 9-11
impartial, 15, 40, 56, 82, 84, 196, 220, 291, 330
379, 396
Cutcakes, 284, 292, 294
Domineering = Crosscram, 142, 144, 298
horse-moving, 283, 289
infinite tolls, 314, 315, 317, 319, 320, 326
loopy games, 359-363, 366-375
remoteness, 296
incentive, 147, 148, 256-259
incomparable, 35
indefinite F&G boards, 674, 686
induction, 115, 234
index
decremented, 705
inequalities for stoppers, 351
Inequality Rule, 348-349
infinite
delphinium, 47
ender, 329
frieze pattern, 512
geranium, 47
Hackenbush, 327, 332, 344
Nim, 330
nim-values, 636, 640
ordinal numbers, 329
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remoteness, 381 Jimmy, 387-391, 413
repetition, 14, 384 Jin-Bai, Kim, 764
Smith theory, 333 Jocasta, 597, 607
tolls, 315-320, 325-326 Johnson, David S., 217, 224, 226,
infinitesimal 36, 169, 170, 171, 173, 229, 539, join, 277-298, 300
690 rapid, 286, 289
infinitesimal numbers, (See over) slightly slower, 283
infinitesimals, in F&G, 690 slow, 286-291, 300, 302
loopy upon®, 708 joints, 562, 564, 566
loopy positive, 693 joker, 358
negative, 708 jump, 813, 63-65, 75, 76, 127-131, 133-137
pure, 706 jumpee, 11
infinitesimally close, 151, 152, 154 jumper, 9
infinitesimally shifted, 177-179, 198 jungle warfare tactics, 210
infinitesimally small, 158 jungle
infinity, 329, 334, 391 clearing, 222
Inglis, Nick, 51 green, 198, 201, 220, 221
initial F&G Positions parted, 201, 202, 209
values of, 688 sliding, 199
initial F&G Values, 698-701 smart game in, 209
initial values, 698, G99 tracking, 204
ink, waste of, 382 unparted, 210
integral, 167-174, 176-179, 334, 366-367
Intermediate Value Theorem, 426-438 k-number, 471
interval, confusion, 121, 149-151, 158, 163 Kajihara, Y., 762
intrigning women, 524 Kano, M., 118
inverting Welter's function, 510-512 Kao Kuo-Yuen, 188
invoices and cheques, 126 Karp, Richard M., 217, 224, 226
inward move, 677 Kasai, Ta.kumi, 765
irrational, 610 Kayles = .77, 15, 81, 82, 89, 91-93, 95, 99,
irregular values, 90-92, 101, 108, 187 110-112, 417, 424
ish = Infinitesimally-SHifted, 177-179, 198 Kayles
Isidor, Bishop of Seville, 768 Dawson's = -07, 90, 93, 95, 101, 109, 438,
isolated circle, 684 444
isomorphism, 469, 473, 491, 529, 586, 604, 632, Double, 99
732, 733 Misére, 431-432
Itoh, H., 766 Quadruple, 99
Iwata, S., 769 Triplicate Dawson's, 271
Iwata, Shigeki, 765 Kaylesvines, 690
Keller, Michael, 756
Jacobson, Guy, 602, 607 Kenyon's Game, 116-117
Jaffrey, A., 539 Kenyon, John Charles, 109, 115, 118
Japanese chess, (See Shogi) Kierulf, Anders, 764
Jelly Beans = .52, 428, 444 killing mutation, 562
Jam, 732 Kim, Yonghoan, 764
Jenkyns, Thomas A., 539 Kindervater, G. A. P., 384, 412
Jewett, R. 1., 740, 768 king

Ji-Hong, Shen, 765 centered, 657, 658
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cornered, 658, 660, 661
edge-charging, 650, 652
sidelined, 661, 663
rook versus king, 667
King's Horses
All the, 277283, 286280, 202, 293
Some of the = Falada, 312
King, Kimberley, 222
Kinggo, 646-664
kite strategy, 243, 244, 246
Klarner, David A., 539
knight, 278
Knight, White, 56-59, 278
Knights of the Square Table, 756
Knuth, Donald Ervin, xvii, 18, 51, 473, 489
Kolpin, Garrett, 758
Konakis, 666
Konane, 690, 759, 760, 765
Korner, Thomas W., 665
Kos (see also loopiness), 758
Kotzig's Nim, 515, 517
Kotzig, Anton, 516, 539
Kraitchik, Maurice, 710
Kriegspiel, 15, 667
Kuperberg, Greg, xvii
Kutz, Martin, xvii, 748

L-game, 384, 408, 412
Lacrosse, 15
ladder, 504
Lake, Robert, 763
Lam, T. K., 607
landing

fox, 693695

geese, 697
Landman, H. A., 764
large boardwidth, 710
Largest Nim, 532
Lasker, Edward, 99, 118, 768
Lasker’s Nim, 99, 113, 114
last cut, 294
last home, 286, 289
last horse, 286, 289
last move, 171
last mouthful, 289
last player losing, 446
last player winning, 2, 9, 12, 14
latent heat, 132, 307

Index

latent loopiness, 375, 391
latent phase change, 168
lateral thinking, 384, 412
Latin squares, 497
Left, 2
boundary, 154-156, 164, 165, 169, 170
excitable, 158159
remoteness, 279, 281-283
stop, 149, 150, 152, 161
tally, 301, 302, 304, 310, 314, 327
Lefty, 25, 51, 234, 284, 289, 300, 308
leg, 211213, 215, 222
Lehman, Alfred, 768
Lehman’s switching game, 767
Lemon Drops = 56, 428, 444
Lemma
Norton’s, 220, 243, 244, 354
Snort, 180
Lenstra, Hendrik Willem, 489
Les Pendus, 736, 737
Let them eat cake!, 289
Levine, J., 765
Levy, D. N. L., 764
Levy, Silvio, xvii
Lewis, Anglo, T68
Lewthwaite, G.W., 747
Lewthwaite’s Game, 747
Li, Shuo-Yen, Robert, 343, 373, 377, 539
lice, infestation with, 600
Lichtensen, David, 763
Lichtenstein, David, 224, 226
Life, 15, 53
light positions, 677
lightening, 684, 686, 694
lightening move, 677, 678, 685
lightning bolts, 50
limbs, stretching, 565
line, real number, 24
line
real number, 23
wiggly, 581
Linnaeus, Carolus, 668
little safe, 621
live spots, 601, 602
Lo, 609, 610, 617, 631
lo, 355-356
Loeb, D. E., 766
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lollipops, 237, 238, 240
long
chain, 543, 545547, 549, 550, 552-556, 561,
563, 564, 569, 574, 575, 577-579
cycle = loop, 553-555, 565
path, 562, 563
period, 108
Long Chain Rule, 549, 550
long periods, 109
loony, 322, 397-407, 558, 561-564, 576, 577,
579, 580
loony endgames, 577
loop
long, 554
short, 554
loopiness (see also kos, superkos), 361-363
blatant, 391
degree of, 360
latent, 375, 391
patent, 376, 391
Loops-and-Branches = .73, 586
loopy, 758
loopy component, 390, 410
loopy game, 327, 334-377, 396, 758, 764
loopy Hackenbush, 343-345
loopy infinitesimal (See over, upon®), 708
loopy number (See over)
loopy option, 410
loopy positive infinitesimal, 693
loopy position, 389, 408, 758
loopy value, 387, 389-391, 758
lose control, 550
lose your shackles!, 565
losing, last player, 413446
Lose slowly!, 278
Lost World, 413-414
louse, 600
Lovasz, L., 766
low region, 688, 698
Lower region, 697
Loyd, Sam, 82, 118
Lucas, Edouard, 607, 729, 768
Lucasta, 585, 588-591, 593, 504, 596, 597
lucky star, 246, 249
Ludo, 14, 15
ludus terni lapilli, 736
Lukewarmth Commandmant, 307, 310
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lush delphinium, 675, 677, 681, 684
Lustenberger, Carlyle, 768

m-plicate, 98
Macmillan, R. H., 768
Magic
Fifteen, 733
square, 733
Maharajah and Sepoys, 710
making tracks, 204
management of cash flow, 126
Mancala, 761, 766
many-way Maundy Cake, 220, 221
map, 38, 145
Mark, 4.24: Matthew 13.12, 405
Markeert, D., 225
markup, 161
Markworthy Commandment, 317
Martin, Greg, xvii, 644, 645, 668
Mason, R. E. A., 764
mast, 152, 154, 163
mast value = mean value, 165, 166
mate, 506, 507
Mateescu, A., 764
Mathematical Go, 759
Mathews, Charles, 764
Mating Method, 506, 507
mattress, 215
Mauhin, Patrick, 27
Mauldon, James G. 79
Maundy Cake, 26, 27, 51, 196, 220, 221
max, 288
maxim, 278, 279, 287
maximal flow, 202, 204-206, 209
Maya Game, Sato’s = Welter's Game, 427
Mayberry, John P., 539
McCurdy, S., 763
Meally, Victor, xvii, 506
mean value, 149, 151-154, 165-168, 172, 174,
178
Meander, 747
men = Phutball players, 752
Merrilees, 737
mex = minimum-excludant, 56, 84, 418, 556,
558
migrating geese formations, 703, 709
Mill, 737
Milnor, John, 188
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Milton, John, 19, 145
minimal criminal, 194, 214
minimal spanning tree, 217-224
miny, 126-129
miny, 353
Miracle Octad Generator, 468, 469
misére
birthdays, 417
Clontours, 587, H88
Cram, 504-506
Cutcakes, 284, 292, 204
Eatcakes, 289, 291
Grundy’s Game, 416-420
Kayles, 431-432
Loops-and-Branches, 586
Lucasta, 590-597
Mex Rule, 418
Nim, 413
octal games, 443-445
play, 15, 86, 278, 281, 282, 284, 286, 287,
201, 293, 312, 413
remoteness, 283
Rims, 586
Sprouts, 602
Stars-and-Stripes, 604
suspense, 289
theory, 415-419
Twopins, 501
unions, 312
Welter's Game, 514, 515
Wyt Queens, 427
mistake, inevitable, 382
mixed, 335
Mobius, August Ferdinand, 467
Moébius transformation, 467
Mock Turtle, 461-465
Fives, 470
Theorem, 464-466
Mock Turtles, 463465
Modular Nim, 539
Moebius, 464-467
Nineteens, 470
Moews, David, 52, 188, 224, 539, 764
MOG = Miracle Octad Generator, 468, 469
Mogul, 464-469
Moidores, 464, 465
Mollison, Denis, 598

money, 171
moneybag, 492
Monopoly, 15
moon, 379
Moore and More, 534
Moore, Eliakim H., 427, 539
Moore, Thomas E., 607
Moore’s Nim,, 427
Morelles, 737
Morgenstern, Oskar, 539
moribundity, 598
equation, 601
Morra, Three-Finger, 15
Morris, Lockwood, 225
Morton, Davis, 640
Moser, Leo, 667, 732, 742, T43, 768
Motley, 469, 477
Mott-Smith, Geoffrey, 768
mountain, 7
purple, 197, 198
move 14, 40
abnormal, 325
alternating, 46, 47
bad, 16
bonus, 405
chance, 14
complimenting, 379, 405-407
consecutive, 405
darkening, 677, 678, 685
entailing, 379, 396-405
equitable and excitable, 161
five-eights of a, 20
fultile, 654
good, 16, 196, 397
half, 4, 19, 20
horse, 406
hotter, 173
illegal, 320-322, 404, 636
inward, 677
legal, 404
lightening, 677, 678, 685
loony, 397-407, 411
non-entailing, 397-398, 400
non-suicidal, 322
normal, 325
outward, 677
overriding, 312, 314, 317, 319, 320, 326
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pass, 281, 283, 284, 286, 289, 292, 293, 294,
338, 352, 355
plausible, 654
predeciding, 312, 320, 321
quarter, 6, 20
repainting, 343
reversible, 55, 56, 60, 62-64, 66, 70, 71, 75,
77, 126, 212, 213, 415
reversible misére, 415
reverting, 425
strategic, 652
stupid, 636
suiciding, 312, 320
sunny, 397-401, 404, 407, 411
tactical, 652
temperature-selected, 132
three-quarter, 17
trailing, 402
worthwhile, 213-216
move set, 515-517
Mr. Cutt and Mr. Shortt, 745, 746
Mrs. Grundy, 310
Miihle, 737
Miiller, Martin, 18, 188, 762, 764
Muscovites, 666
multiples of up, 71, 242, 247, 256, 258
multiples, fractional and non-integral, 236
Munro, Ian, 226
Murray, H.J.R., 668, 737, 768
museums, 705
F&G, T05-708
musical series, 96, 117
mutation, 562
harmless, 562

killing, 562

n-dimensional k-in-a-row, 742
N -positions, 279, 381-384, 408, 410, 439
n-theorem, 615
Nagai, Ayuma, 766
Nakamura, Teigo, 764
Nash, John, 744
negative, 28
charge, 254,
infinitesimals, 708
numbers, 19, 147, 148, 330
of a game, 33-35
positions, 28
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neighbor, 601
Neumann, John von, 539, 606
Neyman, A., 117
nim 15, 40, 42, 53, 55, 56, 114, 173, 191, 240,
387, 454
addition, 463
Antipathetic, 493
Bounded, 517, 518
Chinese = Wythoft’s Game, 427
Double Duplicate, 114
Duplicate, 114, 116
Entailing, 400
Fibonacci, 517
genetic codes for, 605, 606
Goldbach’s, 401
Hilbert, 333
in hot games, 173
infinite, 330
Kotzig's, 515, 517
Largest, 532
Lasker’s, 99, 113, 114
misére, 413
modular, 539
Moore's, 427, 533
Poker, 55
Similar Move, 496-498
Smallest, 532
Sympathetic, 494-496
Triplicate, 114, 116
two-dimensional, 332-333
Welter's, 427
Nim Addition Rule, 73, 556
in hot games, 173
nim-addition, 58, 59, 73, 74, 90, 109, 110, 116,
191-196, 199, 246, 390, 418
Nim-heaps, 41, 42, 56-59, 82, 389, 393, 413,
418424, 426, 430, 434, 436
ambivalent, 426
bogus, 56, 57
nim-multiplication, 475-478
Nim-position, 41, 388, 413, 425-426
nim-product, 475, 476
nim-sequence, 82, 84, 86, 87, 94, 98, 99, 101,
103-105, 107-109, 113, 114, 116
Nimstring, 552556, 558 562, 564567, 569
problem, 552
nimstring arrays, 581
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nim-sum, 59, 73, 74, 82, 90, 91, 109-112
nim-values, 82, 84, 86, 87, 90-96, 98, 99, 110~
117, 191-196, 387408, 410-411, 425-426,
442
addition, 390
doubling, 94
duplication, 94, 98, 99, 114, 116, 444-445
halving, 195
periodic, 84, 86, 91, 92, 94, 98, 99, 101, 103~
105, 107-110, 112-117
reflected, 109
relevant, 396
replication, 98
nimbers, 40-42, 56, 57, 65, 74, 84, 110, 119,
199, 200, 231, 258, 262, 397401, 405-406,
418, 690
adding, 42, 58
infinite, 330
Nimy, Moore's, 427
Nine-in-a-row, 740, 741
Nine Men's Morris, 736, 737, T68
No Highway, 364-367
Noah's Ark theorem, 423, 432-435, 443
node-disjoint cycles, 578
nodes
Col, 47-51
explosive, 49-50
game positions, 42, 341-343, 354-358, 369-
370
Hackenbush, 191-194, 201, 202, 204, 222
Nimstring, 554
Snort, 147, 180
tinted, 204, 206, 208-210, 222
untinted, 204, 209, 210
non-abacus positions, 514
non-arithmetic periodicity, 115
non-number, 147, 148, 159, 160
normal move, 325
normal play, 12, 14, 278, 279, 281, 282, 284,
286, 287, 291, 293, 300, 312
Northeott's Game, 55
Norton, Simon, 145, 168, 188, 220, 243, 244,
247, 256, 354, 667
Noshita, Kohei, 766
NOST, 756

Noughts-and-Crosses = Tic-Tac-Toe, 14
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Nowakowski, R., xvii, 517, 539, 540, 584,640,
668, Thh, THT, T62-T68
novice, 382
NP, 227
NP-complete, 217, 224, 226
NP-hard, 224, 225, 577, 755
Nu, 609
nude, 675
number, TO8
Number Avoidance Theorem, 147-149, 183
number system
Hackenbush, 78
tree and line, 24
numbers, 22, 119, 300, 314
canonical form, 22
empty, 471
evil, 110, 463, 464
Fibonacei, 517, 520, 535, 537
infinite ordinal, 329
infinitesimal (See over)
k-, 471
loopy (See over)
overheated, 176
odious, 110, 463, 471
simplest, 19, 21, 22, 305, 307, 314
Surreal, 18
suspense, 286-289, 292, 294, 315, 317
thermographic thicket of, 176
triangular, 254
whole, 19
nutcrackers, impossible, 379

O-positions, 382, 384, 390-391, 408, 410

O'Beirne, T.H., 79, 118, 454, 539, 768, 769

obtuse triangle, 254

octad, 467-469

octal games, 101, 103-105,107-116, 267, 443—
445

octal notation, 101, 464, 465, 586, 686

odd, 279, 281, 282, 287, 303, 305, 307, 314, 317

odd admits!, 306

odious numbers, 110, 463, 464, 471

off, 336-340, 353, 355-358, 674, 704, T10

Off-Wyth-Its-Tail, 402

Officers = -6, 95, 439440, 444

offside, 336-337, 340, 344-345, 348, 354-355,
369-370

Ohara, E., 766
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Omar, 42, 72, 109, 138, 188, 262, 664, 688, 702
on, 336-338, 353
On-the-Rails, 406-407
ONAG = On Numbers and Games, 18, 22, 48,
52, 78, 117, 130, 144, 188, 193, 225, 234,
236, 262, 278, 208, 454
oNe = Weak or Strong place
One-for-you, Two-for-me, ...,
one-horse game, 278
One-Star Game = 4,07, 102, 103, 604
One-step, Two-step, 529
One-upmanship Rule, 242
ono, 355-357
onside, 336-337, 340, 344347, 354-355, 360
370
oof, 355-358
open, 382, 384, 390-391, 408, 410
opposition, 714-717
option, 14, 154, 155
best, 303
dominated, 62, 63, 75, 77, 149
Left, 31, 32
loopy, 408
non-loopy, 389
questionable, 387
reversible, 60, 62-64, 70, 71, 75, 77, 387
Right, 31, 32
suicidal, 317, 327
worthwhile, 213-215
optional extras, 84
ordinal numbers, 329
ordinal sum, 220
Orman, Hilarie, xvii, 749, 768
Othello, 760, 765
outcome, 28, 35
classes, 28, 84
of sum, 31, 32
outsider, 286, 289
outward move, 677
over 341, 353, 673, 674, 686, 693
overheating, 174, 176, 187, 366, 690
overriding, 312, 314, 319, 326
Ovid, 769
Ozery, M., 79

319

P-positions, 279, 381 385, 408, 410 411, 416
417, 419-424, 426, 431-432, 433
p-theorem, 615
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Pairing Property, Ferguson's, 86, 442
pairs, restive and tame, 425
pale twig, 344
Paun, Gh., 764
Pandora, 346, 548
paradox, 534, 539
Parikh, 764
parity, 73, 234, 526, 545, 697, 698, 702, 704
Parity Principle, 191, 194
Parker, Richard, 535
parody, 286
Parotty girls, 545
parted jungle, 201, 202, 209
particles, 168-170
partizan, 15, 65, 187, 292, 295, 312, 376
pass, 281, 283, 284, 286, 289, 292-294
Patashnik, Oren, 769
patently cold and hot, 307
patently loopy, 376, 391
Paterson, Michael Stewart, 598
path, 202, 562, 563, 746, 747
Path of Righteousness, 548
paths = tracks, 193, 202, 204, 222
Patience = Solitaire, 15
Paul, Jerome L., 769
Paul Wolfgang J., 226
Paulhus, Marc, xvii
pawns, 89
pearls, 522, 523
Peek, 224
Peg Solitaire, 15
Pegg, Ed, xvii
Pegity, Pegotty, 740
pencil-and-paper game, 1, 604
Penfield, Wilder, 414
pentominoes, 749
periodicity, 90-94, 99, 101, 109, 113-15, 117,
236, 292, 310
arithmetic, 99, 113-117, 144, 187
Dawson’s Chess, 90-91
Domineering, 144, 187
Eatcakes, 289, 291
exact, 86
Guiles, 94
Kayles, 91, 92
octal games, 101, 103-105, 107-109, 113-
115
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subtraction games, 84, 86
ultimate, 99, 101, 112, 289
petal, 33, 47, 66, 67, 199, 201, 240, 245, 344
pharisees, 601, 602
phase change, 167, 168
phase change, latent, 168
Philosopher’s Football = Phutball, 224, 752-
755
Phutball, 224, 752-755
picture, 1, 2, 192
of farm life, 145, 146
piebald node 47-48
piebald spot, 145-147
pink twig, 344
place(Zero, oNe, Two), T13
placing plumtrees, 354
Plambeck, Thane E., 454
play, 334
misére, 15, 278, 282, 284, 286, 287, 201, 203,
312
normal, 12, 14, 278, 279, 281, 282, 284, 286,
287, 291, 293, 300, 312
player
first, 28-30
second, 28-30
symmetrical, 547
playing the averages, 167, 173
Pless, Vera, 489
Ploy
Blue Flower, 199, 201, 240, 242
Blue Jungle, 201, 210
Red Jungle, 210
Plugg = Cram, 141, 143, 298, 502-506
plumtrees, 352, 354, 357
poinsoning, 754
Poker, 15
Poker-Nim, 53
Policy, Temperature, 124, 125, 131, 132
Pollak, Henry Oliver, 740
polyominoes, 139, 142
Pond, 1. C., 539
Poole, D. J., 517, 539
PORN, 630, 631
position, 14
abacus, 513-515
active, 149, 150
ajar, 408410

circled, 681, 684, 685, 696
closed, 408-410
cold, 301, 304-306, 322
criticial, 687
daggered, 677
dark, 677
Domineering, 120, 121, 139, 142 144, 153,
177
exceptional, 717
F&G, 682-683
fair, 642
fickle, 413, 423424, 429, 432, 444
firm, 413, 423425, 420, 432
fuzzy, 28, 32, 33
Goldbach, 382
hot, 149, 304
Hound-Dog, 724, 729
light, 677
loony, 322, 397, 407
loopy, 389, 408
M-, 279, 381384, 408, 410, 439
negative, 28-30, 68
non-abacus, 514
O-, 382, 384, 300391, 408, 410
P-, 279, 381-385, 408, 410, 411, 416-417,
419-424, 426, 431-432, 443
positive, 28, 68
Scare’'m Hare'm, 719-721
starting, 14
sunny, 397-398, 401-404
tepid, 306
terminal 41
positive
charge, 263
house, 38
house and garden, 33
positions, 28, 68
posy, 29, 30, 33
POT(S), POTSHOT, 738-T40
poultry, 755
predecider, 312, 320, 321
pretending, 421, 439, 445
Prim, 98, 404, 442
Prince Charles, 525
Princes’ Code of Behavior, 537, 538
Princess and the Roses, 524
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Principle Puzzle
Bogus Nim-heap, 56 The Thirty-Seven, 521
Colon, 191, 193, 194, 220, 355
Complimenting Move, 405 Quadraphage, 641-643, 664
Death Leap, 127-130, 135 Quadruple Kayles, 99
Enough Rope, 16, 547, 736 quality of quaternity, 528
Fusion, 192-195 quantity beats quality!, 201

Quam, 534

quarter-infinite board, 284, 292, 293, 312, 642,
644, 654, 667, 751

quarter-move, 6, 91, 20

quiddity heap, 534

Gift Horse, 72, T7

Parity, 191, 194
Star-Shifting, 250, 258
Translation, 149, 153, 158
Uppitiness Exchange, 246 quiet end, 609, 617

Pritchett, Gordon, 607 position, 617, 618, 620, 770

problem ) theorem, 618, 620, 624, 629
Dots-and-Boxes, 570, 578-580 quietly excludes, 617

hard, 223, 224 quietus, 619

Nimstring, 552 quintessential quinticity, 528
unsolved F&G, 710 quotation marks = eccentric cases, 231, 232,
product 251, 252
acrostic, 482487
nim-, 475-478, 481, 488 rabbit, 711
ugly, 483 Rabin, Michael O., 640
professional boxer, 548 rademacher, rado, radon, 371
Professor Hoffman (Angelo Lewis), 768 Rademacher, Hans, 584
profit, 161, 492 Rails, 585, 586

randomness reigns, 528
range, 497, 498
trifurcated, 705
rank, critical, 710
rapid join, 286, 289
rare values, 110-112

profit-consciousness, 171

program cycle, 316

projective, 430

proof, 115, 147, 148, 165, 166, 183, 188, 201,
212, 213, 216, 217, 220, 221, 224, 236, 240,
248-250, 256-259, 340, 348-350, 370-373, ;
408, 435, 442-443 reader, assiduous, 42

Proviso, Endgame, 416-417 more mathematical, 362
pruned, 675 persevering, 90

) skeptical, 130
prun;ng plumtrf‘;e:s, 354 real number line, 24
pseudocorner, 66

— . rectangles, 25-27, 142, 234, 236, 632
PSPACE, 224, 227, 760, 765, 766 Red edges, 2, 198, 230, 237

-complete, 224, 226 Red tinted nodes, 48, 204

-hard, 2224 Red twig, 213
purchasing contract, 127 Red-Blue Hackenbush, see also Blue-Red
pure infinitesimals, 706 reduced game, 446
purple mountain, 198, 199 redwood
pursuit, 15, 298 bed, 211, 213, 217, 222
Put-or-Take-a-Square = Epstein’s Game, 518, furniture, 211, 217, 222

535 tree, 214-217

putative nim-value, 471, 472 twig, 213, 216
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References, 18, 52, 78, 117, 144, 188, 225, 262,
208, 377, 412, 454, 534, 538, 584, 607, 640,
668, 710, 729, 762
reflexion of Nim-values, 109
region, 692
delta, 697
high, 688, 692, 693, 700, 701
high central, 697, 698
region, low, 698
lower, 697
transition, 702
transitional, 701
trifurcated, 701, 702
Welton's, 688, 693, 695, 697, 699-702, 704,
705
Reid, Michael, xvii
Reisch, Stefan, 226
remote horse, 278, 281, 283
remote star, 230-232, 236, 237, 239, 240, 243-
251, 258, 259
Remote Star Test, 246, 248, 249
remoteness, 173, 279, 281-284, 286, 289, 295,
315, 317, 519, 535, 537, 725, 740
even, 279, 282
horse’s, 281-284, 292
infinite, 381-382
Left, 279, 281-283
misére, 281-284
normal, 279
odd, 279, 282
Right, 279, 281-283
rules, 279, 281
repainting moves, 343
replication of nim-values, 98
resetting the thermostat, 185
restive, 414, 425-426, 432-438, 597
restless, 414, 432-435, 443
Restricted Translation Rule, 261
Reverse Hex, 767
Reverse Othello, 765
Reversi, 765, 760
reversible moves, 55, 56, 60, 62-64, 66, 70, 71,
75, 77, 126, 212, 415
reverting moves, 425
Richardson, J., 765

Index

Right, 2
boundary, 154156, 164, 169, 170
excitable, 158, 159
remoteness, 279, 281-283
slant, 158, 159
stop, 149, 150, 152, 163
tally, 301, 302, 304, 310, 314, 317
Rims, 585, 586
Rip Van Winkle’s Game = Kayles, 82
ripening plums, 354
Rita, 25, 51, 234, 284, 289, 300, 308
Robertson, Edward, 226
Robson, J. M., 763, 764
Rodgers, Tom, 607, 765
Rognlie, R., 762
Rolling Stones, 346
Romantica, 525
Roode, Thea van, xvii, 78, 519
rook, 667
rooted trees, 604
rose-garden, 525, 537, 538
round the world, 381
roundabout, 327, 369, 380
row-rank, 710
Roy, Constant, 713
Rozenberg, G., 764
Ruderman, Harry D., 769
Rugs, 478
Rule
Atomic Weight, 242
Berlekamp's, 77, 78
C.A.B.S., 388-393
Difference, 74, 404
Downsum Absorbancy, 361
Flow, 201, 202, 204, 210
Go-dialects, 16
Ineqality, 348, 349
loony addition, 399
Long Chain, 5546, 549, 550
Mex, 56. 418
Misére Mex, 418
Misére Nim, 418
Misére Play, 15, 279, 281, 413
misére remoteness, 279, 281
Nim-Addition, 59, 60, 73, 74, 390, 418
Normal Play, 12, 14, 278, 279
One-upmanship, 242
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remoteness, 279, 281

Restricted Translation, 261

Simplicity, 22, 24, 25, 27, 39, 45, 48, 304,
305, 307, 314, 317

Smith’s, 388-389, 392-393

suspense, 287, 303

Tally, 304, 305, 315, 316, 326

Two-ahead, 199, 200, 242, 246, 249

With, 256, 257

Without, 256, 257

Wythofl’s Difference, 74, 404

Ruler

Eights, 470

Fifteens, 470

Fives, 470

Fours, 470

function, 98, 436, 437, 470

Game, 469, 470

Sevens, 470

Sixes, 470
ruler function, 98
rules 14

Li's loopy Hackenbush, 344
Russ, 1., 767

Sabidussi, G., 539

Sackson, Sidney, 729, 769

Safe Dancing Haven, Fox's, 695

Sakuta, M, T66

Salomaa, A., 764

saltus, 99, 114, 117, 144, 187

Sarsfield, Richard, 79

Sasaki, N., 763, 766

Saskatchewan landscape, 157

Sato’s Maya Game = Welter’s Game, 427
Saxon, Hnefatafl, 666

scale, Grundy, 87, 90, 91, 94, 96, 101
Scare’'m Hare'm Position, 719-721
Schaeffer, Jonathan, 18, 757, 763, 764
Schaefer, Thomas J., 109, 118, 224, 226, 227
Scarne, John, 769

Schaer, Jonathan, 43

Scheinerman, E. R., 539

Schuh, Fred., 118, 539, 640, 710, 729, 769
Schuhstrings, 523, 524

Schwenk, Allen J., 539
Scissors-Paper-Stone, 15

scorpion, posing as insect, 600
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Scott, Katherine, xvii, 578, 584
Scrabble, T60, 765
scrap-heap, 391-392
scrimmage position, 694, 701
scrimmage region
high, 697
Serimmage Sequence, 687, 688, 692, 693, 700
Seal, David J., 635
seasoned campaigner, 164
Seating Boys and Girls, 132, 133, 179, 261, 310,
366
Seating Couples, 44, 45, 95, 132, 133, 261
Seating Families, 95, 261
second cousin, 101, 103-105, 107, 109, 114, 116
second player wins, 28-30
Secondoft Algorithm, 535
Seemann, Markus, 768
Seki, H., 766
Select Boys and Girls, 310-311
selective compound, 299, 300, 302, 312, 396
selective compound, shortened = severed, 312
Selfridge, John Lewis, 522, 740, 767, T68
sente, 161, 188
Seo, M, T66
separation, 703
Sepoys, see Maharajah, 710
sequence
backbone, 700
early, 688, 689
Sequence
Scrimmage, 687, 688, 700
set
empty, 82, 399
move, 516
subtraction, 84, 86, 442
variation, 220, 221
Seven-in-a-Row, T40
Seven-up, 218, 225
severed head, 205, 220, 221, 312
severed selective compound, 312
SEX
opposite 132
significance of, 528
shackles, 565
Shaki, Ahiezer, S., 377
Shannon, Claude Elwood, 763, 768
shatter, 380
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She-Loves-Me, She-Loves-Me-Not, -05, 67, 262,

109, 114, 116, 273, 529
She-Loves-Me-Constantly, e.g., - 51, 101, 103,
518
Sheep, see Wolves-and-Sheep, 665, 666
Shephard, Geoffrey C., 539
shifting
by stars, 250, 258
infinitesimally, 177, 198
Shogi, 760, 761, 765, 766
short
chain, 562
hot games, 225
loops, 554
paths, 562
positions, 694
short hot games, 225
shortened selective = severed, 312
shortlist, 303, 304, 317
short-sighted view, 159, 160
Shortt, Mr., 745
SHOT(S), 738, 739
Shurman, Jerry, 640
Sibert, William L., 454
Sicherman, George, xvii, 640
side, 336-337, 340-341, 344348, 350, 354356,
369
sidelined king, 661, 663
sidling, 338-342, 346, 350, 365, 371-375
Sidling Theorem, 340, 371-373
Siegel's cgsuite, 687, 690, 692, 697, 702, 703,
705
Siegel, Aaron, xvii, 687, 690, 702, 703, 705, 766
sign, 348-351, 373
Silber, Robert, 79
Silver Dollar Game, 491, 492
Silverman, David L., 668
Simoes-Pereira, J.M.S., 607
Simonim = Similar MOve NIM, 496
Simonson, S., 539
simplest form, 19, 22, 71, 370
simplest number, 19, 21, 22, 305, 307, 314
Simplicity Rule, 22, 24, 25, 27, 39, 45, 48, 304,
305, 307, 314, 316-317
simplifying games, 60, 62, 63, 75, 77
singleton, 413
Single Circle, 691

Index

Sipser, Michael, 224, 226
Sisyphus, 346-348
Six-in-a-Row, T40
Six Men's Morris, 737
Sleator, Daniel, 602, 607
Slither, 767
Ski-Jumps, 7, 9-11, 14, 15, 19, 27, 40
skittles, 81
slant, right = correct, 163
slash, 6, 163, 366
slashes, 130, 163, 366
sliding jungles, 199, 220, 221
slipper, 9
Sloane, N. J. A., xvii, 489, 766, 767
slow horses, 286, 288, 289
slow join, 286-291, 300, 302
slower join, 283
small, 36, 38, 229 232, 234, 236240, 242 251,
253, 254, 256259, 261, 262
Smallest Nim, 532
Smith Theory, 333, 395
Smith's Rule, 388-389, 392-393
Smith, Arthur, 765
Smith, Cedric Austen Bardell, 89, 96, 99, 109,
117, 118, 278, 298, 312, 388-389, 391-393,
417, 454
Smith, Martin C., 765
Smith, Sally, xvii
snakes, 40-42, 240
Snaky, T68
Snatzke, Raymond Georg, 756, 763
Solitaire, 15
board, English, 710
Solutions to Problems, 709
sophistication levels, 569
Soulé, S., 765
sound bound for a hound, 723
Sowing Games, 761, 766
snakes, 40-42, 240
Snakes-and-Ladders, 14, 386
Snort, 47, 145147, 149-151, 153, 154, 156
158, 161, 167, 168, 177, 180-183, 224
dictionary, 147, 180-183
lemmas, 180
Solitaire, 15
spades, xix(1), 359-363
span, 710
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span-length, 194, 195
spanning tree of graph, 217, 224
spar, 488
Sparring, 488
sparse space, 110-113
species, 435
Spight, William, xvii, 764, 765
spinster, 506, 507
Sprague, Roland, 539, 540
Sprague-Grundy theory, 569, 636
splitting the atom, 234-236
spoiler, 161
spokes, 549
spot, 145, 146, 391, 585
Spots and Sprouts, 95
Sprague-Grundy Theory, 56, 118, 220, 221, 333
Sprague, Roland Percival, 42, 56, 79, 220, 221,
333
Sprouts, 598-602
Brussels, 603, 604, 607
Squandering Squares, 254
square, 731
magic, 731
perfect, 518
Strong, 713, 717, 718
Weak, 713, 715, 717-721
square-eater, 643
Squares Off, 319
Stability Condition, 363
stable positions, 705
stack of coupons, 693
stage, 392-395
Stage, early, 689
Staircase Fives, 499
stalemate = tie, 14
stalk, 29, 30
stalk = stem, 67
Stalking = -31, 429, 444
standard form, 101, 103-105, 107-109, 114
star, 34, 39, 47, 48, 65, 68, 69, 120, 121, 125,
155, 156, 190, 229, 261
far, 230-232, 236, 137, 239, 243 251, 258,
259
lucky, 246, 249
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remote, 230-232, 236, 237, 239, 240, 243-
251, 258, 259
thermorgraph of, 156
Star-Incentive theorem, 259
Star-Shifting Principle, 250,258
Stars-and-Stripes, 603, 604
starting position, 14
startling value, 39
Steingrimsson, E., 117
Steinhaus function = remoteness, 279
Steinhaus, Hugo, 279, 298, 393
stem, 36, 47, 67, 199, 201, 210, 230, 240, 242
step, H29
Stiller, Lewis, 763
Stockmeyer, Larry, 224, 226, 227
Stone, John, 112
stones
black = blocking, 642, 644-646, 654-657
Go, 642-664
lifting, 346
non-static, 661
resetting, 346
rolling, 346
static, 661, 663
strategic, 643, 650, 652, 654, 657
tactical, 643, 652
unlimited supply, 650, 664
useful, 663
wandering = white, 642, 644-646, 648, 650,
654-658, 661, 663
well-placeed, 656
stop, Left and Right, 165, 166
stopper, 337, 340-341, 351-352, 354, 356-357,
362, 369-370
stopping position, 149-153, 156-166
value, 149, 153, 173
stops, 697
Storer, James, 224
Strategic Landing Plan, 694
Geese's, 696
strategic stones, 650, 652, 654, 657
strategy 173, 314
Abacus, 513
copying, 642
Goller’s 408
Hare's, 718
kite, 243, 244, 246
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misere Lucasta, 593
stealing, 406, 556, 616, 744
survival, 371-373
Swivel Chair, 349
symmetry, 3, 194
Thermostatic, 158, 163-167, 183185, 188,
225
Tweedledum and Tweedledee, 2, 3, 35
winning, 28, 31, 32, 46, 314
streak, 483
Streaking, 483
string, 523, 524, 550, 552-556
air on a G-, 97
g-, 524
Hackenbush, 22, 24, 77, 78, 194, 195, 329
of pearls, 522, 523
Strings-and-Coins, 550-555
Strip and Streak, 483, 487
Stripping, 483
strong squares, 713
structure of periods, 109
subperiods of nim-values, 109
subselective compounds, 396
subtraction game, 84, 86, 87, 98, 395, 430, 442
subtraction set, 84, 86, 442
suicider, 312, 317, 320
sums
eternal, 46
galvinized, 253
of games, 31, 120,121, 161, 163, 165, 166,
220, 277
of nimbers, 42
NP-hard, 225
ordinal, 220
sunny positions, 397401, 404
superheavy atoms, 333
superkos (See also loopiness), 758
superstars, 261
surprise exam, 534
Surreal Numbers, 18
survival, 348, 371-373, 413
suspense, 173, 277, 287, 288
numbers, 286-289, 292, 294, 315, 317
rules, 287, 303
swanpan, 513
Swedes, 666
Sweets and Nuts, 393-394, 410

Index

Swedish King, 666

Swirling Tartans, 476, 477
switches, 121-125, 157, 706
Switching Game, Shannon, 744-T46
Swivel Chair Strategy, 349
Sylver Coinage, 15, 539
Sylvester, James Joseph, 640
Sym, 473

symmetrical player, 547
symmetry, 51

symmetry rule’s OK, 548
symmetry strategy, 502, 550
Sympathetic Nim, 494
Sympler, 473, 479

Synonim, 494-496

T-move, 165, 184
tabella, 736
Tableux de Young, 766
Tablut, 666
tackle, Phutball, 754
Tactical Amendment, 697
tactical
diagram, 691
move, 643
stone, 643, 652
tactically worthless, 652
tactics, corner, 654
tails, 396, 402, 404
Tait, Hilary, 310
Take-A-Square, 430, 442
take-and-break games, 81, 82, 84, 86, 97, 89—
96, 98, 99, 101, 103-105, 107-117
take-away games, 82, 84, 86, 87, 98, 101
Takizawa, Takenobu, 765
tally, 300-326
machine, 308, 316, 318
rules, 304, 305, 308, 315, 316, 325, 326
tame, 417, 422-438, 443446
tameable, 425, 446
tardy union, 312
Tarjan, Robert Endre, 224-226
tartan, 476
Tartan Theorem, 477
Tartans, Swirling, 476
tax exemption, 151-155
Tchouka(illon), 761, 766
Tego, Theodore, 762
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temperature, 124, 125, 131, 151-155, 164-173,
184, 185, 231
e, T06
ambient, 164, 165, 188
critical, 167-171
policy, 124-125, 131-132
tendril, 564, 567, 568, 576, 577, 579
tendrilleedd crosses, 582
Tennis, 15
tentative tally, 306, 310
tepid component, 326, 327
tepid game, 308, 316, 327
tepid position, 306
tepid work, 316
terminal position, 2, 7, 28, 41, 416
ternary = base 3, 471, 472, 481
Ternups, 470-472
tesseravore, 642
Test
Remote Star, 246, 248, 249
Uppitiness, 245
The More the Merrier, 533
Theorem
At-least-one, 258
Decomposition, 565, 567
Don't-Break-It-Up, 213, 214, 216
Euler’s, 571
Fundamental, of Zeroth Order Moribundity,
598
Half-Tame, 435
Harmless Mutation, 562-564
Intermediate Value, 426, 438
Max-Flow, Miin-cut, 201, 205, 211
Mock Turtle, 464, 466
n-, 615
Noah's Ark, 423, 432-435, 443
non-arithmetic periodicity, 115
Number Avoidance, 147-149, 183
on simplifying games, 75-77
P, 615
Quiet End, 618
Redwood Furniture, 212-214
Sidling, 340, 371373
Simplest Form, 370
Star-Incentive, 259
Tartan, 477
Thirty-One, 723, 729

Index

797

Twopins Decomposition, 500, 567
Uglification, 486
Zeckendorf’s, 535
theory, Green Hackenbush, 190-196, 201
Theory, Smith, 323, 395
thermal dissociation, 168
thermograph, 151159, 161166, 168172, 174,
176, 358
compound, 164
extended, 161, 162
foundations, 155
four-stop, 158, 159
of oof, 358
thermographic thicket, 176
thermographs of star and up, 156
thermography, 151-174, 176-179, 188, 225, 262,
690
extended, 759
generalized, 759, 764
thermostat, 164, 185
THERMOSTRAT = Thermostatic Strategy, 188,
225
thinking
backwards, 384
forwards, 384
laterally, 384, 412
third cousin, 101, 103-105, 107, 109, 114, 116
Third One Lucky, 520
thirding, 620
thirteen’s unlucky!, 420
Thirty-One Theorem, 723, 729
tims, 475
Tic Tac Toe, Hyperspace, 768, 769
Tit-Tat-Toe = Tic-Tac-Toe, 731
Thorp, Edward, 765
Thompson, Ken, 632
Three Men's Morris, 737
Three Up, 737
Three-Color Hackenbush, see alse Hackenbush,
Hotchpotch
Three-Finger Morra, 15
three-quarters, 6, 17
timesstar, nim-product, 475
thumb-twiddling, 405,
Thursday, Maundy, 26
Tic-Tac-Toe, 14, 94
Tic-Toc-Tac-Toe, 738
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Tie, 14
tie # draw, 14
time, complete in exponential, 224
timer, 300,-303, 305-308, 310, 314-318, 322,
325-327
tiniest, 706
tiniest value, T06
Tinsley, Marion, 763
tinted, 38, 39, 47-49, 51, 204, 206, 209, 210
tiny, 353, 357
tiny, 126, 127, 169, 170
-a~-quarter, 132
-2, 126
-z, 126
F&G, T06
tis, tisn, 342, 344, 374
Toads & Frogs, 12, 40, 63-65, 68-70, 72, 75,
77, 127-132, 134-138, 367-368, 375-376,
690
toenail, 158
Toeplitz, Otto, 584
toil, honest, 616
toll, 300-303, 305-306, 318, 310, 312, 315-321,
325
hacking, 686
infinite, 312-320, 325-326
tombstone, 318
toolkit, 690
Top Entails, 396
top row traps, 697
trace, 714
tracking, 65, 202, 205, 222
track = path, 202, 225
Trading Triangles, 254
trailing, 402, 403
trains, 402
transition
phase, 168
two-ish region, 702
transitional region, 701
translation
by nimbers, 259, 261
by numbers, 149, 153, 158
of four-stop games, 157-158
of switches, 123
traps, top row, 697
travesty, 286

Index

Treblecross, 113
Treblecross = 007, 94, 95
tree
Australian, 22, 24, 214
binary, 22, 24
game, 40
green, 191-193
greenwood, 34
infinite, 332
redwood, 214-217
spanning, 217, 224
with extra twig, 214, 216
trey, 357
triality traps, 714
triality triumphs, 526
Triangles, Trading, 254
triangular numbers, 254, 520
Tribulations, 535
trifurcated range, 705
trifurcated region, 701, 702
Trim, 534
trimmed, 675
trimmed Delphinium, 686
Triplet Fives, 470
Triplets, 469
Triplicate Dawson’s Kayles, 261
Triplicate Nim, 114, 116
tripling, 620
Tromp, John, xvii, 673
truth, awful, 416
Tsai, Alice, 765
Tschantz, Steve, 52
Tsyan-Shizi = Wythoff’s Game, 427
Tubergen, G. J. van, 384, 412
tuft, 502, 504, 506
Tuppins = Twopins, 500
Turn-and-Eatcake, 236
Turning Corners, 473
Turning Turtles, 461
Turnips, 470-472, 481-483
Tutte, William T., 538
Tweedledum and Tweedledee, 2, 3, 35
argument, 35, 72
twig, 192, 193, 196, 213, 216
twigs
pale and pink, 344
redwood, 213, 214, 216
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Twins, 469

Acrostic, 483
Twisted Bynum, 236
Two-ahead rule, 199, 200
two-ish transition, 701, 702
two and two, 419
Two place, 713

two-dimensional games, 332, 333, 473-487, 632

Two-Dimensional Nim, 332-333
Twopins-vine, 546-568

U-turns, 754
Uehara, R., 769
uggles, 483
uglification, 483
table, 485
Theorem, 486
ugly product, 483
Uiterwijk, J. W. H. M., 144, 762, 765, 766
Uléhla, J., 607
Ullman, D., 539
ultimate periodicity, 99, 101, 289, 627
unboundedly unbounded, 610
uncertainty, 230
under, 341, 353
underlying economy, 151

union, 299-302, 304-308, 310-312, 314, 316-

320, 322, 325-327

misére partizan, 312

of variation sets, 605

tardy, 312

urgent, 312, 316
units, fickle and firm, 423
unparted jungles, 210
unrestricted tallies, 314-318
unruly, 116
unsnappable vine, 567
unstable positions, 705
untinted nodes, 50, 204, 206, 210
up, T, 151, 155, 229, 247, 258
up-second, 236, 341
up-onth, 375
up, F&G, 706
upon, 321, 333, 355, T08
upon* = delphinium, 341, 344, 353
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uppitiness = atomic weight, 200-202, 204, 206,

208, 200, 211, 220-222, 225, 230, 232, 234,
236-240, 242-244, 246, 248, 251, 253, 256,
258, 259, 261

uppity, equally, 242, 245
upset board, 317
upstart equality, 71
upsum, 336, 365, 367
urgent unions, 312, 316

value 4-7, 9-12, 17, 19, 20, 22, 24-26, 28, 36,

38, 39, 43-45, 691
complicated, 707, T08
early, 700
initial, 698, 699
of Fox-and-Geese, 673
of the Initial F&G Positions, 688
mast, 152-154, 165, 166
mean, 149, 151-154, 165, 166, 188
startling, 39
tiniest, 706

value versus average, 10
values

Childish Hackenbush, 43, 52

Col, 38, 39, 50

common, 110

Cram, 505, 506

Cutcake, 25

Domineering, 120, 121, 139, 142, 144

entailed, 397404

exceptional, 90-92, 101, 108

excluded, 111

F&G, circled FOXTAC, 691

F&G, early, 689

F&G, initial, 698-701

Hackenbush, 4-6, 17, 19, 20

irregular, 90-92, 101, 108

loony, 558

loopy, 387, 389-391

Maundy Cake, 26

nim-, 82, 84, 86, 87, 90-96, 98, 99, 110-117,
191-195, 230

Nimstring, 558

non-loopy, 389

putative, 471, 472

rare, 110-112

redwood bed, 216

regular, 90, 91
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Seating Boys-and-Girls, 133

Seating Couples, 45

Ski-Jumps, 9-11, 19

small, 36, 220-232, 234, 236-240, 242-251,

253, 254, 256-259, 261, 262

Snort, 147, 180-183

Streaking, 484, 487

Stripping, 484, 487

switch, 121-125

Toads-and-Frogs, 12, 131, 134-138
van den Herik, H. J., 740, 765, 766, 767
van der Meulen, Maarten, 766
variations, 94, 310
variation set, 220, 221
varieties, 362
victory, 163
vine, 575, 576
vines, 566-568, 575, 57
Vout, Colin, 38

Walden, W. E., 765

Walrus, 461-462

Walsh, J. L., 52

waltz -6, 96

wandering stones, 642, 644-646, 648, 650, 654
658, 661, 663

war, cold, 299, 300-302, 304, 306, 307

warfare, jungle, 210

Wari, 761

warming, 187

Waterman, Lewis, 760

Weak squares, 713, 715, 717-721

weight, see atomic weight

Weigi (See Go)

welt, 506

Welter function, 506, 510, 511, 513, 514

Welter's Game, 427, 506, 507, 510, 514, 515

Welter, C. P., 540

Welton’s Delphinium, 675, 693-695

Welton's region, 688, 693, 695, 697, 699-702,
704, 705

Welton, Jonathan, xvii, 673, 710

West, Julian, xvii, 144, 584

Whim, 534

Whinihan, Michael J., 540

Whist, 275

white heap, 532

White Knight, 56-59, 278

Index

White, Farmer, 145-147
white stones = wandering stones, 642, G44-

646, 648, 650, 654658, 661, 663
whole numbers, 19
wholeness of Hackenbush Hotchpotch, 251
wiggly line, 560, 581
Willmott, S., 765
width, 164, 184
wild animals, 430-431
wild games, 430-431, 434435, 437438
Wilder, Thornton, 414
Wilson, David, xvii, 584
Wilson, Neil Y., 118
win quickly!, 278
Windows, 481
winners and losers, 748
winning post, 395, 411
Wolfe, David, xvii, 18, 142, 144, 188, 224, 225,

690, 710, 761, 763-765
Wolves-and-Sheep, 665
women, beautiful and intriguing, 524
wonders, numberless, 119
working out a horse, 28
world

lost, 413-414
small, 229

World Games Review, 756
worthwhile move, option, 213-216
Wright House, 372
Wyt Queens, 59, 60, 74, 402, 427428
Wythoft’s Difference Rule, 74, 404
Wythoft’s Game, 15, 60, 74, 427
Wythoff, W. A., 74, 79

Xin-Bo, Gao, 765
Xin-Yu, Sun, 640

Yamasaki, Yohei, 427, 430, 454, 540
Yanai, K., 766

Yedwab, Laura J., 188, 224, 227
Yeong-Nan, Yeh, 767

Yes!, 53, 112, 348

Yesha, Y. 224, 226

Yoshimura, J., 762

You-nit, 609

Zamkauskas, Walter, 756
Zeckendorf algorithm, 535, 537
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Zeckendorf Theorem, 535
Zeilberger, Doron, 640
zero, 2, 3, 7, 19, 2830, 33, 41
deriders of, 483
place, 713
position, 2
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Zetters, T.G.L., 740, 768
Zieve, Michael, 118, 540
zigzag, 177

Zig-Zag, 632

zoo, Good Child’s, 427
Zuzarte, Maria S.N., 607




